Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 181(13): 1973-1992, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38454578

RESUMO

BACKGROUND AND PURPOSE: α4ß2 nicotinic acetylcholine (nACh) receptors assemble in two stoichiometric forms, one of which is potentiated by calcium. The sites of calcium binding that underpin potentiation are not known. EXPERIMENTAL APPROACH: To identify calcium binding sites, we applied cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulations to each stoichiometric form of the α4ß2 nACh receptor in the presence of calcium ions. To test whether the identified calcium sites are linked to potentiation, we generated mutants of anionic residues at the sites, expressed wild type and mutant receptors in clonal mammalian fibroblasts, and recorded ACh-elicited single-channel currents with or without calcium. KEY RESULTS: Both cryo-EM and MD simulations show calcium bound to a site between the extracellular and transmembrane domains of each α4 subunit (ECD-TMD site). Substituting alanine for anionic residues at the ECD-TMD site abolishes stoichiometry-selective calcium potentiation, as monitored by single-channel patch clamp electrophysiology. Additionally, MD simulation reveals calcium association at subunit interfaces within the extracellular domain. Substituting alanine for anionic residues at the ECD sites reduces or abolishes stoichiometry-selective calcium potentiation. CONCLUSIONS AND IMPLICATIONS: Stoichiometry-selective calcium potentiation of the α4ß2 nACh receptor is achieved by calcium association with topographically distinct sites framed by anionic residues within the α4 subunit and between the α4 and ß2 subunits. Stoichiometry-selective calcium potentiation could result from the greater number of calcium sites in the stoichiometric form with three rather than two α4 subunits. The results are relevant to modulation of signalling via α4ß2 nACh receptors in physiological and pathophysiological conditions.


Assuntos
Cálcio , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Cálcio/metabolismo , Humanos , Sítios de Ligação , Animais
2.
Nature ; 616(7956): 378-383, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37045917

RESUMO

The evolution of new traits enables expansion into new ecological and behavioural niches. Nonetheless, demonstrated connections between divergence in protein structure, function and lineage-specific behaviours remain rare. Here we show that both octopus and squid use cephalopod-specific chemotactile receptors (CRs) to sense their respective marine environments, but structural adaptations in these receptors support the sensation of specific molecules suited to distinct physiological roles. We find that squid express ancient CRs that more closely resemble related nicotinic acetylcholine receptors, whereas octopuses exhibit a more recent expansion in CRs consistent with their elaborated 'taste by touch' sensory system. Using a combination of genetic profiling, physiology and behavioural analyses, we identify the founding member of squid CRs that detects soluble bitter molecules that are relevant in ambush predation. We present the cryo-electron microscopy structure of a squid CR and compare this with octopus CRs1 and nicotinic receptors2. These analyses demonstrate an evolutionary transition from an ancestral aromatic 'cage' that coordinates soluble neurotransmitters or tastants to a more recent octopus CR hydrophobic binding pocket that traps insoluble molecules to mediate contact-dependent chemosensation. Thus, our study provides a foundation for understanding how adaptation of protein structure drives the diversification of organismal traits and behaviour.


Assuntos
Comportamento Animal , Decapodiformes , Octopodiformes , Receptores Nicotínicos , Células Receptoras Sensoriais , Paladar , Tato , Animais , Comportamento Animal/fisiologia , Sítios de Ligação , Microscopia Crioeletrônica , Decapodiformes/química , Decapodiformes/fisiologia , Decapodiformes/ultraestrutura , Evolução Molecular , Interações Hidrofóbicas e Hidrofílicas , Neurotransmissores/metabolismo , Octopodiformes/química , Octopodiformes/fisiologia , Octopodiformes/ultraestrutura , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/ultraestrutura , Paladar/fisiologia , Tato/fisiologia , Células Receptoras Sensoriais/química , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/ultraestrutura
3.
Nature ; 616(7956): 373-377, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37045920

RESUMO

Chemotactile receptors (CRs) are a cephalopod-specific innovation that allow octopuses to explore the seafloor via 'taste by touch'1. CRs diverged from nicotinic acetylcholine receptors to mediate contact-dependent chemosensation of insoluble molecules that do not readily diffuse in marine environments. Here we exploit octopus CRs to probe the structural basis of sensory receptor evolution. We present the cryo-electron microscopy structure of an octopus CR and compare it with nicotinic receptors to determine features that enable environmental sensation versus neurotransmission. Evolutionary, structural and biophysical analyses show that the channel architecture involved in cation permeation and signal transduction is conserved. By contrast, the orthosteric ligand-binding site is subject to diversifying selection, thereby mediating the detection of new molecules. Serendipitous findings in the cryo-electron microscopy structure reveal that the octopus CR ligand-binding pocket is exceptionally hydrophobic, enabling sensation of greasy compounds versus the small polar molecules detected by canonical neurotransmitter receptors. These discoveries provide a structural framework for understanding connections between evolutionary adaptations at the atomic level and the emergence of new organismal behaviour.


Assuntos
Evolução Molecular , Octopodiformes , Células Receptoras Sensoriais , Animais , Microscopia Crioeletrônica , Ligantes , Octopodiformes/química , Octopodiformes/fisiologia , Octopodiformes/ultraestrutura , Receptores Nicotínicos/química , Receptores Nicotínicos/fisiologia , Receptores Nicotínicos/ultraestrutura , Células Receptoras Sensoriais/química , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/ultraestrutura , Tato/fisiologia , Transmissão Sináptica , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas
4.
Biophys J ; 118(2): 403-414, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31843264

RESUMO

Nanodiscs (NDs) are an excellent alternative to small unilamellar vesicles (SUVs) for studies of membrane protein structure, but it has not yet been shown that membrane proteins are able to spontaneously fold and insert into a solution of freely diffusing NDs. In this article, we present SDS-PAGE differential mobility studies combined with fluorescence, circular dichroism, and ultraviolet resonance Raman spectroscopy to confirm the spontaneous folding of outer membrane protein A (OmpA) into preformed NDs. Folded OmpA in NDs was incubated with Arg-C protease, resulting in the digestion of OmpA to membrane-protected fragments with an apparent molecular mass of ∼26 kDa (major component) and ∼24 kDa (minor component). The OmpA folding yields were greater than 88% in both NDs and SUVs. An OmpA adsorbed intermediate on NDs could be isolated at low temperature and induced to fold via an increase in temperature, analogous to the temperature-jump experiments on SUVs. The circular dichroism spectra of OmpA in NDs and SUVs were similar and indicated ß-barrel secondary structure. Further evidence of OmpA folding into NDs was provided by ultraviolet resonance Raman spectroscopy, which revealed the intense 785 cm-1 structural marker for folded OmpA in NDs. The primary difference between folding in NDs and SUVs was the kinetics; the rate of folding was two- to threefold slower in NDs compared to in SUVs, and this decreased rate can tentatively be attributed to the properties of NDs. These data indicate that NDs may be an excellent alternative to SUVs for folding experiments and offer benefits of optical clarity, sample homogeneity, control of ND:protein ratios, and greater stability.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Nanoestruturas/química , Dobramento de Proteína , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Modelos Moleculares , Mutação , Conformação Proteica em Folha beta
5.
Biochim Biophys Acta ; 1818(2): 154-61, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21925139

RESUMO

The folding reaction of a ß-barrel membrane protein, outer membrane protein A (OmpA), is probed with Förster resonance energy transfer (FRET) experiments. Four mutants of OmpA were generated in which the donor fluorophore, tryptophan, and acceptor molecule, a naphthalene derivative, are placed in various locations on the protein to report the evolution of distances across the bilayer and across the protein pore during a folding event. Analysis of the FRET efficiencies reveals three timescales for tertiary structure changes associated with insertion and folding into a synthetic bilayer. A narrow pore forms during the initial stage of insertion, followed by bilayer traversal. Finally, a long-time component is attributed to equilibration and relaxation, and may involve global changes such as pore expansion and strand extension. These results augment the existing models that describe concerted insertion and folding events, and highlight the ability of FRET to provide insight into the complex mechanisms of membrane protein folding. This article is part of a Special Issue entitled: Membrane protein structure and function.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Membrana/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Cinética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dobramento de Proteína
6.
Biophys J ; 100(9): 2121-30, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21539779

RESUMO

Aromatic amino acids of membrane proteins are enriched at the lipid-water interface. The role of tryptophan on the folding and stability of an integral membrane protein is investigated with ultraviolet resonance Raman and fluorescence spectroscopy. We investigate a model system, the ß-barrel outer membrane protein A (OmpA), and focus on interfacial tryptophan residues oriented toward the lipid bilayer (trp-7, trp-170, or trp-15) or the interior of the ß-barrel pore (trp-102). OmpA mutants with a single tryptophan residue at a nonnative position 170 (Trp-170) or a native position 7 (Trp-7) exhibit the greatest stability, with Gibbs free energies of unfolding in the absence of denaturant of 9.4 and 6.7 kcal/mol, respectively. These mutants are more stable than the tryptophan-free OmpA mutant, which exhibits a free energy of unfolding of 2.6 kcal/mol. Ultraviolet resonance Raman spectra of Trp-170 and Trp-7 reveal evolution of a hydrogen bond in a nonpolar environment during the folding reaction, evidenced by systematic shifts in hydrophobicity and hydrogen bond markers. These observations suggest that the hydrogen bond acceptor is the lipid acyl carbonyl group, and this interaction contributes significantly to membrane protein stabilization. Other spectral changes are observed for a tryptophan residue at position 15, and these modifications are attributed to development of a tryptophan-lipid cation-π interaction that is more stabilizing than an intraprotein hydrogen bond by ∼2 kcal/mol. As expected, there is no evidence for lipid-protein interactions for the tryptophan residue oriented toward the interior of the ß-barrel pore. These results highlight the significance of lipid-protein interactions, and indicate that the bilayer provides more than a hydrophobic environment for membrane protein folding. Instead, a paradigm of lipid-assisted membrane protein folding and stabilization must be adopted.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Bicamadas Lipídicas/metabolismo , Dobramento de Proteína , Análise Espectral Raman , Triptofano/metabolismo , Raios Ultravioleta , Adsorção , Bicamadas Lipídicas/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Espectrometria de Fluorescência , Termodinâmica
7.
J Am Chem Soc ; 133(18): 7075-83, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21500781

RESUMO

Protein engineering method to study the mutation effects on muscle acylphosphatase (AcP) has been actively applied to describe kinetics and thermodynamics associated with AcP aggregation as well as folding processes. Despite the extensive mutation experiments, the molecular origin and the structural motifs for aggregation and folding kinetics as well as thermodynamics of AcP have not been rationalized at the atomic resolution. To this end, we have investigated the mutation effects on the structures and thermodynamics for the aggregation and folding of AcP by using the combination of fully atomistic, explicit-water molecular dynamics simulations, and three-dimensional reference interaction site model theory. The results indicate that the A30G mutant with the fastest experimental aggregation rate displays considerably decreased α1-helical contents as well as disrupted hydrophobic core compared to the wild-type AcP. Increased solvation free energy as well as hydrophobicity upon A30G mutation is achieved due to the dehydration of hydrophilic side chains in the disrupted α1-helix region of A30G. In contrast, the Y91Q mutant with the slowest aggregation rate shows a non-native H-bonding network spanning the mutation site to hydrophobic core and α1-helix region, which rigidifies the native state protein conformation with the enhanced α1-helicity. Furthermore, Y91Q exhibits decreased solvation free energy and hydrophobicity compared to wild type due to more exposed and solvated hydrophilic side chains in the α1-region. On the other hand, the experimentally observed slower folding rates in both mutants are accompanied by decreased helicity in α2-helix upon mutation. We here provide the atomic-level structures and thermodynamic quantities of AcP mutants and rationalize the structural origin for the changes that occur upon introduction of those mutations along the AcP aggregation and folding processes.


Assuntos
Hidrolases Anidrido Ácido/química , Proteínas Musculares/química , Músculo Esquelético/enzimologia , Hidrolases Anidrido Ácido/genética , Sequência de Aminoácidos , Animais , Cavalos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Proteínas Musculares/genética , Mutação , Dobramento de Proteína , Estrutura Secundária de Proteína/genética , Termodinâmica , Acilfosfatase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...