Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncolytics ; 30: 301-315, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37727704

RESUMO

Oncolytic viruses are of significant clinical interest due to their ability to directly infect and kill tumors and enhance the anti-tumor immune response. Previously, we developed KLS-3010, a novel oncolytic virus derived from the International Health Department-White (IHD-W) strain vaccinia virus, which has robust tumoricidal effects. In the present study, we generated a recombinant oncolytic virus, KLS-3020, by inserting three transgenes (hyaluronidase [PH-20], interleukin-12 [IL-12], and soluble programmed cell death 1 fused to the Fc domain [sPD1-Fc]) into KLS-3010 and investigated its anti-tumor efficacy and ability to induce anti-tumor immune responses in CT26.WT and B16F10 mouse tumor models. A single injection of KLS-3020 significantly decreased tumor growth. The roles of the transgenes were investigated using viruses expressing each single transgene alone and KLS-3020. PH-20 promoted virus spread and tumor immune cell infiltration, IL-12 activated and reprogrammed T cells to inflammatory phenotypes, and sPD1-Fc increased intra-tumoral populations of activated T cells. The tumor-specific systemic immune response and the abscopal tumor control elicited by KLS-3020 were demonstrated in the CT26.WT tumor model. The insertion of transgenes into KLS-3020 increased its anti-tumor efficacy, supporting further clinical investigation of KLS-3020 as a novel oncolytic immunotherapy.

2.
Hum Gene Ther ; 32(9-10): 517-527, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32854548

RESUMO

Oncolytic viruses are promising cancer therapies due to their selective killing of tumor cells and ability to stimulate the host immune system. As an oncolytic virus platform, vaccinia virus has unique advantages, including rapid replication, a broad range of host targets, and a large capacity for transgene incorporation. In this study, we developed a novel oncolytic vaccinia virus with high potency and a favorable safety profile. We began with the International Health Department-White (IHD-W) strain, which had the strongest cytotoxicity against tumor cells among the four vaccinia virus strains tested. Next, several candidate viruses were constructed by deleting three viral genes (C11R, K3L, and J2R) in various combinations, and their efficacy and safety were compared. The virus ultimately selected, named KLS-3010, exhibited strong antitumor activity against broad targets in vitro and in vivo. Furthermore, KLS-3010 showed a favorable safety profile in mice, as determined by the biodistribution and body weight change. More promisingly, KLS-3010 was able to shift the tumor microenvironment to a proinflammatory state, as evidenced by an increase in activated lymphocytes after KLS-3010 administration, suggesting that this strain may elicit an oncolytic virus-mediated immune response. The KLS-3010 strain thus represents a promising platform for the further development of oncolytic virus-based cancer therapies.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Linhagem Celular Tumoral , Saúde Global , Camundongos , Vírus Oncolíticos/genética , Distribuição Tecidual , Vaccinia virus/genética , Replicação Viral
3.
Sci Rep ; 7(1): 2528, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566713

RESUMO

Activation of the endothelium by pro-inflammatory stimuli plays a key role in the pathogenesis of a multitude of vascular diseases. Angiogenesis is a crucial component of the vascular response associated with inflammatory signaling. The CD40/CD40 ligand dyad in endothelial cells (EC) has a central role in promoting vascular inflammatory response; however, the molecular mechanism underlying this component of inflammation and angiogenesis is not fully understood. Here we report a novel microRNA mediated suppression of endothelial CD40 expression. We found that CD40 is closely regulated by miR-424 and miR-503, which directly target its 3' untranslated region. Pro-inflammatory stimuli led to increased endothelial CD40 expression, at least in part due to decreased miR-424 and miR-503 expression. In addition, miR-424 and miR-503 reduced LPS induced EC sprouting, migration and tube formation. Moreover, we found that miR-424 and miR-503 expression is directly regulated by peroxisome proliferator-activated receptor gamma (PPARγ), whose endothelial expression and activity are decreased in response to inflammatory factors. Finally, we demonstrate that mice with endothelial-specific deletion of miR-322 (miR-424 ortholog) and miR-503 have augmented angiogenic response to LPS in a Matrigel plug assay. Overall, these studies identify a PPARγ-dependent miR-424/503-CD40 signaling axis that is critical for regulation of inflammation mediated angiogenesis.


Assuntos
Antígenos CD40/genética , Inflamação/genética , Neovascularização Patológica/genética , PPAR gama/genética , Animais , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Camundongos , MicroRNAs/genética , Morfogênese/genética , Transdução de Sinais
4.
BMB Rep ; 50(7): 384-389, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28602162

RESUMO

The Nogo-B receptor (NgBR) is necessary for not only Nogo-B-mediated angiogenesis but also vascular endothelial growth factor (VEGF) -induced angiogenesis. However, the molecular mechanisms underlying the regulatory role of the VEGF-NgBR axis in angiogenesis are not fully understood. Here, we report that miR-26a serves as a critical regulator of VEGF-mediated angiogenesis through directly targeting NgBR in endothelial cells (ECs). Stimulation of ECs by VEGF increased the expression of NgBR and decreased the expression of miR-26a. In addition, miR-26a decreased the VEGF-induced migration and proliferation of ECs. Moreover, miR-26a overexpression in ECs decreased the VEGF-induced phosphorylation of the endothelial nitric oxide synthase (eNOS) and the production of nitric oxide, which is important for angiogenesis. Overall, our data suggest that miR-26a plays a key role in VEGF-mediated angiogenesis through the modulation of eNOS activity, which is mediated by its ability to regulate NgBR expression by directly targeting the NgBR 3'-UTR. [BMB Reports 2017; 50(7): 384-389].


Assuntos
Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Neovascularização Fisiológica , Receptores de Superfície Celular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Proliferação de Células , Células Cultivadas , Humanos , MicroRNAs/genética , Óxido Nítrico/análise
5.
Biochem Biophys Res Commun ; 482(1): 28-34, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836539

RESUMO

Infection with pathogens activates the endothelial cell and its sustained activation may result in impaired endothelial function. Endothelial dysfunction contributes to the pathologic angiogenesis that is characteristic of infection-induced inflammatory pathway activation. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is a protein receptor which recognizes bacterial molecules and stimulates an immune reaction in various cells; however, the underlying molecular mechanisms in the regulation of inflammation-triggered angiogenesis are not fully understood. Here we report that peroxisome proliferator-activated receptor gamma (PPARγ)-mediated miR-125a serves as an important regulator of NOD1 agonist-mediated angiogenesis in endothelial cells by directly targeting NOD1. Treatment of human umbilical vein endothelial cells with natural PPARγ ligand, 15-Deoxy-Delta12,14-prostaglandin J2, led to inhibition of NOD1 expression; contrarily, protein levels of NOD1 were significantly increased by PPARγ knockdown. We report that PPARγ regulation of NOD1 expression is a novel microRNA-mediated regulation in endothelial cells. MiR-125a expression was markedly decreased in human umbilical vein endothelial cells subjected to PPARγ knockdown while 15-Deoxy-Delta12,14-prostaglandin J2 treatment increased the level of miR-125a. In addition, NOD1 is closely regulated by miR-125a, which directly targets the 3' untranslated region of NOD1. Moreover, both overexpression of miR-125a and PPARγ activation led to inhibition of NOD1 agonist-induced tube formation in endothelial cells. Finally, NOD1 agonist increased the formation of cranial and subintestinal vessel plexus in zebrafish, and this effect was abrogated by concurrent PPARγ activation. Overall, these findings identify a PPARγ-miR-125a-NOD1 signaling axis in endothelial cells that is critical in the regulation of inflammation-mediated angiogenesis.


Assuntos
Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , PPAR gama/metabolismo , Vasculite/metabolismo , Animais , Células Cultivadas , Regulação para Baixo , Células Endoteliais/patologia , Humanos , Neovascularização Patológica/patologia , Vasculite/patologia , Peixe-Zebra
6.
Exp Mol Med ; 47: e175, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26228095

RESUMO

Pulmonary arterial hypertension (PAH) is a rare but progressive and currently incurable disease, which is characterized by vascular remodeling in association with muscularization of the arterioles, medial thickening and plexiform lesion formation. Despite our advanced understanding of the pathogenesis of PAH and the recent therapeutic advances, PAH still remains a fatal disease. In addition, the susceptibility to PAH has not yet been adequately explained. Much evidence points to the involvement of epigenetic changes in the pathogenesis of a number of human diseases including cancer, peripheral hypertension and asthma. The knowledge gained from the epigenetic study of various human diseases can also be applied to PAH. Thus, the pursuit of novel therapeutic targets via understanding the epigenetic alterations involved in the pathogenesis of PAH, such as DNA methylation, histone modification and microRNA, might be an attractive therapeutic avenue for the development of a novel and more effective treatment. This review provides a general overview of the current advances in epigenetics associated with PAH, and discusses the potential for improved treatment through understanding the role of epigenetics in the development of PAH.


Assuntos
Epigênese Genética , Hipertensão Pulmonar/genética , MicroRNAs/genética , Animais , Metilação de DNA/efeitos dos fármacos , Descoberta de Drogas/métodos , Epigênese Genética/efeitos dos fármacos , Terapia Genética/métodos , Humanos , Hipertensão Pulmonar/terapia
7.
BMB Rep ; 47(6): 311-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24755557

RESUMO

microRNAs (miRNAs) are a class of small, non-coding RNAs that play critical posttranscriptional regulatory roles typically through targeting of the 3'-untranslated region of messenger RNA (mRNA). Mature miRNAs are known to be involved in global cellular processes, such as differentiation, proliferation, apoptosis, and organogenesis, due to their capacity to target multiple mRNAs. Thus, imbalances in the expression and/or activity of miRNAs are involved in the pathogenesis of numerous diseases, including pulmonary arterial hypertension (PAH). PAH is a progressive disease characterized by vascular remodeling due to excessive proliferation of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs). Recently, studies have evaluated the roles of miRNAs involved in the pathogenesis of PAH in these pulmonary vascular cells. This review provides an overview of recent discoveries on the role of miRNAs in the pathogenesis of PAH and discusses the potential for miRNAs as therapeutic targets and biomarkers of PAH.


Assuntos
Hipertensão Pulmonar/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...