Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Treat ; 55(1): 155-166, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35681111

RESUMO

PURPOSE: BRCA1 and BRCA2 are among the most important genes involved in DNA repair via homologous recombination (HR). Germline BRCA1/2 (gBRCA1/2)-related cancers have specific characteristics and treatment options but conducting gBRCA1/2 testing and interpreting the genetic imprint are sometimes complicated. Here, we describe the concordance of gBRCA1/2 derived from a panel of clinical tumor tissues using next-generation sequencing (NGS) and genetic aspects of tumors harboring gBRCA1/2 pathogenic variants. MATERIALS AND METHODS: Targeted sequencing was performed using available tumor tissue from patients who underwent gBRCA1/2 testing. Comparative genomic analysis was performed according to gBRCA1/2 pathogenicity. RESULTS: A total of 321 patients who underwent gBRCA1/2 testing were screened, and 26 patients with gBRCA1/2 pathogenic (gBRCA1/2p) variants, eight patients with gBRCA1/2 variants of uncertain significance (VUS; gBRCA1/2v), and 43 patients with gBRCA1/2 wild-type (gBRCA1/2w) were included in analysis. Mutations in TP53 (49.4%) and PIK3CA (23.4%) were frequently detected in all samples. The number of single-nucleotide variants (SNVs) per tumor tissue was higher in the gBRCA1/2w group than that in the gBRCA1/2p group (14.81 vs. 18.86, p=0.278). Tumor mutation burden (TMB) was significantly higher in the gBRCA1/2w group than in the gBRCA1/2p group (10.21 vs. 13.47, p=0.017). Except for BRCA1/2, other HR-related genes were frequently mutated in patients with gBRCA1/2w. CONCLUSION: We demonstrated high sensitivity of gBRCA1/2 in tumors analyzed by NGS using a panel of tumor tissues. TMB value and aberration of non-BRCA1/2 HR-related genes differed significantly according to gBRCA1/2 pathogenicity in patients with breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Feminino , Humanos , Biomarcadores Tumorais/genética , Proteína BRCA1/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Genes BRCA2 , Genômica , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Neoplasias Ovarianas/genética
2.
PLoS One ; 15(2): e0228097, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32078626

RESUMO

Sperm motility is a crucial factor for normal fertilisation that is partly supported by mitochondrial activity. Enzymatic biofuel cells (EBFCs) generate electric currents by an electron grade from anodic to cathodic electrodes in a culture media. We demonstrate that electrical stimulation by EBFC at the nano-Ampere range enhances sperm motility that can potentially allow the development of a new therapeutic tool for male infertility, including poor motility. EBFC was set up with three different electrical currents (112 nA/cm2 and 250 nA/cm2) at two different times (1 h, 2 h). Each sample was evaluated for its motility by computer-assisted sperm analyses and sperm viability testing. In the expanded study, we used the optimal electrical current of the EBFC system to treat asthenozoospermia and sperm with 0% motility. Results showed that optimal electrical stimulation schemes with EBFCs enhanced sperm motility by 30-40% compared with controls. Activated spermatozoa led to tyrosine phosphorylation in the tail area of the sperm following the electrical stimulation in the nano-Ampere range. However, the electrically stimulated group did not exhibit increased acrosomal reaction rates compared with the control group. In cases related to asthenozoospermia, 40% of motility was recovered following the electrical stimulation at the nano-Ampere range. However, motility is not recovered in sperm with 0% motility. In conclusion, we found that sperm motility was enhanced by exposure to electrical currents in the nano-Ampere range induced by optimal EBFCs. Electrical stimulation enhanced the motility of the sperm though tyrosine phosphorylation in spermatozoa. Therefore, our results show that electrical currents in the nano-Ampere range can be potentially applied to male infertility therapy as enhancers of sperm motility in assisted reproductive technology.


Assuntos
Fontes de Energia Bioelétrica , Estimulação Elétrica , Enzimas/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/citologia , Humanos , Masculino , Fosforilação , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...