Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(24): 25679-25688, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38054480

RESUMO

While organic-inorganic hybrid perovskites are emerging as promising materials for next-generation photovoltaic applications, the origins and pathways of perovskite instability remain speculative. In particular, the degradation of perovskite surfaces by ambient water is a crucial subject for determining the long-term viability of perovskite-based solar cells. Here, we conducted surface characterization and atomic-scale analysis of the reaction mechanisms for methylammonium lead bromide (MA(CH3NH3)PbBr3) single crystals using ambient-pressure atomic force microscopy (AP-AFM) and near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) in environments ranging from ultrahigh vacuum to 0.01 mbar of water vapor. MAPbBr3 single crystals, grown by a solution process, were mechanically cleaved under UHV conditions to obtain an atomically clean surface. Consecutive topography and friction force measurements in low-pressure water (pwater ≈ 10-5 mbar) revealed the formation of degraded patches, one atomic layer deep, gradually increasing their coverage until the surface was entirely covered at a water exposure of 4.7 × 104 langmuir (L). At the perimeters of these degraded patches, a higher friction coefficient was observed, along with an interstitial step height, which we attribute to a structure equivalent to that of the MA-Br terminated surface. Combined with NAP-XPS analysis, our results demonstrate that water vapor induces the dissociation of surface methylammonium ligands, eventually resulting in the depletion of the surface MA and the full coverage of hydrocarbon species after exposure to 0.01 mbar of water vapor.

2.
Nat Commun ; 14(1): 4979, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669936

RESUMO

Metallocenes are highly versatile organometallic compounds. The versatility of the metallocenes stems from their ability to stabilize a wide range of formal electron counts. To date, d-block metallocenes with an electron count of up to 20 have been synthesized and utilized in catalysis, sensing, and other fields. However, d-block metallocenes with more than formal 20-electron counts have remained elusive. The synthesis and isolation of such complexes are challenging because the metal-carbon bonds in d-block metallocenes become weaker with increasing deviation from the stable 18-electron configuration. Here, we report the synthesis, isolation, and characterization of a 21-electron cobaltocene derivative. This discovery is based on the ligand design that allows the coordination of an electron pair donor to a 19-electron cobaltocene derivative while maintaining the cobalt-carbon bonds, a previously unexplored synthetic approach. Furthermore, we elucidate the origin of the stability, redox chemistry, and spin state of the 21-electron complex. This study reveals a synthetic method, structure, chemical bonding, and properties of the 21-electron metallocene derivative that expands our conceptual understanding of d-block metallocene chemistry. We expect that this report will open up previously unexplored synthetic possibilities in d-block transition metal chemistry, including the fields of catalysis and materials chemistry.

3.
Small ; 19(37): e2301755, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144439

RESUMO

Heterogeneous catalytic mediators have been proposed to play a vital role in enhancing the multiorder reaction and nucleation kinetics in multielectron sulfur electrochemistry. However, the predictive design of heterogeneous catalysts is still challenging, owing to the lack of in-depth understanding of interfacial electronic states and electron transfer on cascade reaction in Li-S batteries. Here, a heterogeneous catalytic mediator based on monodispersed titanium carbide sub-nanoclusters embedded in titanium dioxide nanobelts is reported. The tunable catalytic and anchoring effects of the resulting catalyst are achieved by the redistribution of localized electrons caused by the abundant built-in fields in heterointerfaces. Subsequently, the resulting sulfur cathodes deliver an areal capacity of 5.6 mAh cm-2 and excellent stability at 1 C under sulfur loading of 8.0 mg cm-2 . The catalytic mechanism especially on enhancing the multiorder reaction kinetic of polysulfides is further demonstrated via operando time-resolved Raman spectroscopy during the reduction process in conjunction with theoretical analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...