Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 130(6): 1893-1902, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33886385

RESUMO

While it has long been known that contraction robustly stimulates skeletal muscle glucose uptake, the molecular steps regulating this increase remain incompletely defined. The mammalian ortholog of Sir2, sirtuin 1 (SIRT1), is an NAD+-dependent protein deacetylase that is thought to link perturbations in energy flux associated with exercise to subsequent cellular adaptations. Nevertheless, its role in contraction-stimulated glucose uptake has not been described. The objective of this study was to determine the importance of SIRT1 to contraction-stimulated glucose uptake in mouse skeletal muscle. Using a radioactive 2-deoxyglucose uptake (2DOGU) approach, we measured ex vivo glucose uptake in unstimulated (rested) and electrically stimulated (100 Hz contraction every 15 s for 10 min; contracted) extensor digitorum longus (EDL) and soleus from ∼15-wk-old male and female mice with muscle-specific knockout of SIRT1 deacetylase activity and their wild-type littermates. Skeletal muscle force decreased over the contraction protocol, although there were no differences in the rate of fatigue between genotypes. In EDL and soleus, loss of SIRT1 deacetylase activity did not affect contraction-induced increase in glucose uptake in either sex. Interestingly, the absolute rate of contraction-stimulated 2DOGU was ∼1.4-fold higher in female compared with male mice, regardless of muscle type. Taken together, our findings demonstrate that SIRT1 is not required for contraction-stimulated glucose uptake in mouse skeletal muscle. Moreover, to our knowledge, this is the first demonstration of sex-based differences in contraction-stimulated glucose uptake in mouse skeletal muscle.NEW & NOTEWORTHY Here, we demonstrate that glucose uptake in response to ex vivo contractions is not affected by the loss of sirtuin 1 (SIRT1) deacetylase function in muscle, regardless of sex or muscle type. Interestingly, however, similar to studies on insulin-stimulated glucose uptake, we demonstrate that contraction-stimulated glucose uptake is robustly higher in female compared with the male skeletal muscle. To our knowledge, this is the first demonstration of sex-based differences in contraction-stimulated glucose uptake in skeletal muscle.


Assuntos
Contração Muscular , Sirtuína 1 , Animais , Transporte Biológico , Feminino , Glucose/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Sirtuína 1/metabolismo
2.
Front Physiol ; 9: 789, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997524

RESUMO

Introduction: The Phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in skeletal muscle insulin-stimulated glucose uptake. While whole-body and tissue specific knockout (KO) of individual or combinations of the regulatory subunits of PI3K (p85α, p55α, and p50α or p85ß); increase insulin sensitivity, no study has examined whether increasing the expression of the individual regulatory subunits would inhibit insulin action in vivo. Therefore, the objective of this study was to determine whether skeletal muscle-specific overexpression of the p55α regulatory subunit of PI3K impairs skeletal muscle insulin sensitivity, or prevents its enhancement by caloric restriction. Methods: We developed a novel "floxed" mouse that, through the Cre-LoxP approach, allows for tamoxifen (TMX)-inducible and skeletal muscle-specific overexpression of the p55α subunit of PI3K (referred to as, 'p55α-mOX'). Beginning at 10 weeks of age, p55α-mOX mice and their floxed littermates (referred to as wildtype [WT]) either continued with free access to food (ad libitum; AL), or were switched to a calorie restricted diet (CR; 60% of AL intake) for 20 days. We measured body composition, whole-body energy expenditure, oral glucose tolerance and ex vivo skeletal muscle insulin sensitivity in isolated soleus and extensor digitorum longus muscles using the 2-deoxy-glucose (2DOG) uptake method. Results: p55α mRNA and protein expression was increased ∼2 fold in muscle from p55α-mOX versus WT mice. There were no differences in energy expenditure, total activity, or food intake of AL-fed mice between genotypes. Body weight, fat and lean mass, tissue weights, and fasting glucose and insulin were comparable between p55α-mOX and WT mice on AL, and were decreased equally by CR. Interestingly, overexpression of p55α did not impair oral glucose tolerance or skeletal muscle insulin signaling or sensitivity, nor did it impact the ability of CR to enhance these parameters. Conclusion: Skeletal muscle-specific overexpression of p55α does not impact skeletal muscle insulin action, suggesting that p85α and/or p50α may be more important regulators of skeletal muscle insulin signaling and sensitivity.

3.
J Stroke Cerebrovasc Dis ; 11(6): 315-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-17903892

RESUMO

Studies investigating patients with irradiation induced stroke are rare, and the clinical presentation, imaging features, and related vascular abnormalities remain to be studied. We reviewed 12 consecutive stroke patients (8 men and 4 women; mean age = 60 years) who had a previous history of radiation therapy because of head and neck malignancies. Brain CT/MRI and angiography were performed in all the patients. All the patients presented with transient ischemic attack or completed stroke. Vascular lesions generally occurred at the areas compatible with the radiation site. Significant extracranial carotid stenosis was observed in 7 patients, and 5 of them had neck malignancies. Intracranial vascular lesions were documented in 7, which included distal vertebral and/or basilar artery in 3, and distal carotid artery and/or middle cerebral artery in 6 patients. Five of them had head malignancy. The mean interval between the irradiation and the onset of stroke was 8.5 years, which tended to be short in patients with intracranial diseases as compared to those with extracranial diseases. We conclude that intracranial arterial diseases are at least as frequent as extracranial diseases in patients with radiation-induced stroke. This potential hazard of radiotherapy should be considered in treating patients with head and neck malignancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...