Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(38): 7808-7812, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37718644

RESUMO

Based on the correlation between inflammation and reactive oxygen species and viscosity, a fluorescent probe (SWJT-19) was designed for a relay detection of hypochlorite ions and viscosity. The synthesized probe could quickly and selectively detect hypochlorite ions, as well as viscosity of the system effectively. Moreover, the probe had been successfully applied to sequentially detect hypochlorite ions and viscosity in organisms, as well as imaging in mouse inflammation.

2.
Pharmaceutics ; 15(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765265

RESUMO

Intraperitoneal injection of dihydromyricetin (DMY) has shown promising potential in the treatment of alcoholism. However, its therapeutic effect is limited due to its low solubility, poor stability, and high gut-liver first-pass metabolism, resulting in very low oral bioavailability. In this study, we developed a DMY-loaded self-emulsifying drug delivery system (DMY-SEDDS) to enhance the oral bioavailability and anti-alcoholism effect of DMY. DMY-SEDDS improved the oral absorption of DMY by facilitating lymphatic transport. The area under the concentration-time curve (AUC) of DMY in the DMY-SEDDS group was 4.13-fold higher than in the DMY suspension group. Furthermore, treatment with DMY-SEDDS significantly enhanced the activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in the liver of mice (p < 0.05). Interestingly, DMY-SEDDS also increased ADH activity in the stomach of mice with alcoholism (p < 0.01), thereby enhancing ethanol metabolism in the gastrointestinal tract and reducing ethanol absorption into the bloodstream. As a result, the blood alcohol concentration of mice with alcoholism was significantly decreased after DMY-SEDDS treatment (p < 0.01). In the acute alcoholism mice model, compared to saline treatment, DMY-SEDDS prolonged the onset of LORR (loss of righting reflex) (p < 0.05) and significantly shortened the duration of LORR (p < 0.01). Additionally, DMY-SEDDS treatment significantly reduced gastric injury in acute alcoholism mice. Collectively, these findings demonstrate the potential of DMY-SEDDS as a treatment in the treatment of alcoholism.

3.
Chem Commun (Camb) ; 58(14): 2339-2342, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35080212

RESUMO

Metal porphyrins, which possess metal-N coordination centers, are important building blocks for the construction of porous organic materials with catalytic performance. However, most of the previous work has focused on controlling the metal elements instead of the metal-N coordinations. Here, Pt(II) N-confused porphyrin and Pt(II) porphyrin based conjugated microporous polymers were synthesized by Yamamoto coupling reaction. The structural and property differences of Pt-N3C and Pt-N4 were studied. Calculations demonstrate that the Pt-N3C-based porous polymer exhibits broader photoabsorption and narrower bandgap than conventional Pt-N4-based porous polymers.

4.
Chemistry ; 27(6): 2155-2164, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33165980

RESUMO

Transition metal-based nanoparticle-embedded carbon materials have received increasing attention for constructing next-generation electrochemical catalysts for energy storage and conversion. However, designing hybrid carbon materials with controllable hierarchical micro/mesoporous structures, excellent dispersion of metal nanoparticles, and multiple heteroatom-doping remains challenging. Here, a novel pyridinium-containing ionic hypercrosslinked micellar frameworks (IHMFs) prepared from the core-shell unimicelle of s-poly(tert-butyl acrylate)-b-poly(4-bromomethyl) styrene (s-PtBA-b-PBMS) and linear poly(4-vinylpyridine) were used as self-sacrificial templates for confined growth of molybdenum disulfide (MoS2 ) inside cationic IHMFs through electrostatic interaction. After pyrolysis, MoS2 -anchored nitrogen-doped porous carbons possessing tunable hierarchical micro/mesoporous structures and favorable distributions of MoS2 nanoparticles exhibited excellent electrocatalytic activity for hydrogen evolution reaction as well as small Tafel slope of 66.7 mV dec-1 , low onset potential, and excellent cycling stability under acidic condition. Crucially, hierarchical micro/mesoporous structure and high surface area could boost their catalytic hydrogen evolution performance. This approach provides a novel route for preparation of micro/mesoporous hybrid carbon materials with confined transition metal nanoparticles for electrochemical energy conversion.

5.
Materials (Basel) ; 13(7)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224913

RESUMO

Due to the growing demand for energy and imminent environmental issues, hydrogen energy has attracted widespread attention as an alternative to traditional fossil energy. Platinum (Pt) catalytic hydrogen evolution reaction (HER) is a promising technology to produce hydrogen because the consumed electricity can be generated from renewable energy. To overcome the high cost of Pt, one effective strategy is decreasing the Pt nanoparticle (NP) size from submicron to nano-scale or even down to single atom level for efficient interacting water molecules. Herein, atomically dispersed Pt and ultra-fine Pt NPs embedded porous carbons were prepared through the pyrolysis of Pt porphyrin-based conjugated microporous polymer. As-prepared electrocatalyst exhibit high HER activity with overpotential of down to 31 mV at 10 mA cm-2, and mass activity of up to 1.3 A mgPt-1 at overpotential of 100 mV, which is double of commercial Pt/C (0.66 A mgPt-1). Such promising performance can be ascribed to the synergistic effect of the atomically dispersed Pt and ultra-fine Pt NPs. This work provides a new strategy to prepare porous carbons with both atomically dispersed metal active sites and corresponding metal NPs for various electrocatalysis, such as oxygen reduction reaction, carbon dioxide reduction, etc.

6.
Polymers (Basel) ; 10(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30961264

RESUMO

Cobalt-doped graphene-coupled hypercrosslinked polymers (Co-GHCP) have been successfully prepared on a large scale, using an efficient RAFT (Reversible Addition-Fragmentation Chain Transfer Polymerization) emulsion polymerization and nucleophilic substitution reaction with Co (II) porphyrin. The Co-GHCP could be transformed into cobalt-doped porous carbon nanosheets (Co-GPC) through direct pyrolysis treatment. Such a Co-GPC possesses a typical 2D morphology with a high specific surface area of 257.8 m² g-1. These intriguing properties of transition metal-doping, high conductivity, and porous structure endow the Co-GPC with great potential applications in energy storage and conversion. Utilized as an electrode material in a supercapacitor, the Co-GPC exhibited a high electrochemical capacitance of 455 F g-1 at a specific current of 0.5 A g-1. After 2000 charge/discharge cycles, at a current density of 1 A g-1, the specific capacitance increased by almost 6.45%, indicating the excellent capacitance and durability of Co-GPC. These results demonstrated that incorporation of metal porphyrin into the framework of a hypercrosslinked polymer is a facile strategy to prepare transition metal-doped porous carbon for energy storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...