Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 28(3): 446-451, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274816

RESUMO

Abuse of the common anti-diarrheal loperamide is associated with QT interval prolongation as well as development of the potentially fatal arrhythmia torsades de pointes. The mechanism underlying this cardiotoxicity is high affinity inhibition of the human ether-a-go-go-related gene (hERG) cardiac K+ channel. N-Desmethyl loperamide is the major metabolite of loperamide and is a close structural relative of the parent molecule. To date no information is available regarding the affinity of N-desmethyl loperamide for human cardiac ion channels. The effects of N-desmethyl loperamide on various cloned human cardiac ion channels including hERG, KvLQT1/mink and Nav1.5 were studied and compared to that of the parent. N-Desmethyl loperamide was a much weaker (7.5-fold) inhibitor of hERG compared to loperamide. However, given the higher plasma levels of the metabolite relative to the parent, it is likely that N-desmethyl loperamide can contribute, at least secondarily, to the cardiotoxicity observed with loperamide abuse. We used the recently solved cryo-EM structure of the hERG channel together with previously published inhibitors, to understand the basis of the interactions as well as the difference that a single methyl plays in the hERG channel blocking affinities of these two compounds.


Assuntos
Canal de Potássio ERG1/antagonistas & inibidores , Loperamida/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Relação Dose-Resposta a Droga , Canal de Potássio ERG1/metabolismo , Humanos , Loperamida/análogos & derivados , Loperamida/química , Modelos Moleculares , Estrutura Molecular , Bloqueadores dos Canais de Potássio/síntese química , Bloqueadores dos Canais de Potássio/química , Relação Estrutura-Atividade
2.
J Appl Toxicol ; 37(4): 445-453, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27553911

RESUMO

Inhibition of the human ether-a-go-go-related gene (hERG) K+ channel by drugs leads to QT prolongation on the electrocardiogram and can result in serious cardiac arrhythmia. For this reason, screening of drugs on hERG is mandatory during the drug development process. Patch clamp electrophysiology in a defined physiological saline solution (PSS) represents the standard method for assaying drug effects on the channel. To make the assay more translatable to clinical studies, we have conducted whole-cell patch clamping of hERG using pure human serum as the extracellular medium. Pure human serum had little effect on the hERG channel waveform or the current-voltage relationship when compared to PSS. hERG current recordings were highly stable in serum at room temperature, but prolonged recordings at the physiological temperature required prior heat inactivation of the serum. Compared to PSS, the IC50 values, conducted at room temperature, of the classic hERG blocking drugs cisapride, moxifloxacin, and terfenadine were shifted to the right by an extent predicted by their known plasma protein binding, but we did not detect any differences in IC50 s between male and female serum. Total plasma levels of these drugs associated with clinical QT prolongation corresponded to small (<15%) inhibition of hERG current in pure serum suggesting that minor inhibition of the channel leads to observable pharmacodynamic effects. Conducting whole-cell patch clamping of hERG in human serum has the potential to make the assay more translatable to clinical studies and improve its predictive value for safety testing. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Canais de Potássio Éter-A-Go-Go/sangue , Animais , Células CHO , Cricetinae , Cricetulus , Meios de Cultura , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Técnicas de Patch-Clamp , Potássio/sangue , Bloqueadores dos Canais de Potássio/farmacologia , Soro , Temperatura , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/fisiopatologia , Pesquisa Translacional Biomédica
3.
Naunyn Schmiedebergs Arch Pharmacol ; 389(10): 1133-7, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27530870

RESUMO

Loperamide is a µ-opioid receptor agonist commonly used to treat diarrhea and often available as an over-the-counter medication. Recently, numerous reports of QRS widening accompanied by dramatic QT interval prolongation, torsades de pointe arrhythmia, and death have been reported in opioid abusers consuming large amounts of the drug to produce euphoria or prevent opiate withdrawal. The present study was undertaken to determine the mechanisms of this cardiotoxicity. Using whole-cell patch clamp electrophysiology, we tested loperamide on the cloned human cardiac sodium channel (Nav1.5) and the two main repolarizing cardiac K(+) channels cloned from the human heart: KvLQT1/minK and the human ether-a-go-go-related gene (hERG) channel. Loperamide inhibited Nav1.5 with IC50 values of 297 and 239 nM at holding potentials of -90 and -70 mV, respectively. Loperamide was weakly active on KvLQT1/minK producing 17 and 65 % inhibition at concentrations of 1 and 10 µM, respectively. Conversely, loperamide was found to be a very high affinity inhibitor of the hERG channel with an IC50 value of 89 nM at room temperature and 33 nM when measured at physiological temperature. The QRS and QT interval prolongation and the attending arrhythmias, produced by loperamide, derive from high affinity inhibition of Nav1.5 and especially hERG. Since the drug has been widely available and safely used as directed for many years, we believe that the potent inhibition loperamide possesses for cardiac ion channels has only been uncovered because of the excessive misuse of the drug as a consequence of the recent opioid abuse epidemic.


Assuntos
Antidiarreicos/toxicidade , Síndrome do QT Longo/induzido quimicamente , Loperamida/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/complicações , Torsades de Pointes/etiologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/toxicidade , Potenciais de Ação , Cardiotoxicidade , Relação Dose-Resposta a Droga , Canal de Potássio ERG1/efeitos dos fármacos , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Células HEK293 , Humanos , Canal de Potássio KCNQ1/efeitos dos fármacos , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Técnicas de Patch-Clamp , Fatores de Risco , Fatores de Tempo , Torsades de Pointes/metabolismo , Torsades de Pointes/fisiopatologia , Transfecção
4.
Bioorg Med Chem ; 23(3): 429-38, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25577710

RESUMO

Lead compounds 5-fluoro-2-methyl-N-[2-methyl-4-(2-methyl-[1,3']bipyrrolidinyl-1'-yl)-phenyl]-benzamide (1), tetrahydro-pyran-4-carboxylic acid [((2S,3'S)-2-methyl-[1,3']bipyrrolidinyl-1'-yl)-phenyl]-amide (2), and 3,5-dimethyl-isoxazole-4-carboxylic acid [((2S,3'S)-2-methyl-[1,3']bipyrrolidinyl-1'-yl)-phenyl]-amide (3) discovered in our laboratory, displayed high histamine H3 receptor (H3R) affinity, good selectivity and weak human Ether-à-go-go-Related Gene (hERG) channel affinity with desirable overall physico-chemical and pharmacokinetic (PK) profiles. Herein, we describe the design and synthesis of a novel series of H3R antagonists utilizing a scaffold hopping strategy. Further structure-activity relationship (SAR) studies of the series culminated in the identification of ((2S,3'S)-2-methyl-[1,3']bipyrrolidinyl-1'-yl)-naphthalene-2-carboxylic acid (tetrahydro-pyran-4-yl)-amide (4c) and -[4-((2S,3'S)-2-methyl-[1,3']bipyrrolidinyl-1'-yl)-phenyl]-N-(tetrahydro-pyran-4-yl)-acetamide (4d), which exhibited good H3R affinity in vitro, good selectivity, and desirable PK properties. Compounds 4c and 4d were also assessed in cardiac safety experiments. In particular, the effects of the compounds on action potentials recorded from ventricular myocytes isolated from guinea pigs were used to screen compounds that not only displayed a low affinity towards hERG channel, but also had lower interference with other cardiac ion channels. Compound 4c did not alter the major parameters in this model system at ⩽10 µM, and no significant induction of any major haemodynamic effect when intravenously administered at 3mg/kg dose to anaesthetized mongrel dogs. Compound 4c is a new promising lead as orally potent and selective H3R antagonist belonging to a distinct structural class.


Assuntos
Antagonistas dos Receptores Histamínicos H3/química , Antagonistas dos Receptores Histamínicos H3/síntese química , Animais , Células CHO , Cricetulus , Cães , Desenho de Fármacos , Feminino , Cobaias , Antagonistas dos Receptores Histamínicos H3/farmacologia , Humanos , Masculino , Técnicas de Patch-Clamp , Estereoisomerismo , Relação Estrutura-Atividade , Transativadores/metabolismo , Regulador Transcricional ERG
5.
Assay Drug Dev Technol ; 12(6): 352-60, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25147907

RESUMO

Human stem cell-derived cardiomyocytes provide a cellular model for the study of electrophysiology in the human heart and are finding a niche in the field of safety pharmacology for predicting proarrhythmia. The cardiac L-type Ca2+ channel is an important target for some of these safety studies. However, the pharmacology of this channel in these cells is altered compared to native cardiac tissue, specifically in its sensitivity to the Ca2+ channel activator S-(-)-Bay K 8644. Using patch clamp electrophysiology, we examined the effects of S-(-)-Bay K 8644 in three separate stem cell-derived cardiomyocyte cell lines under various conditions in an effort to detect more typical responses to the drug. S-(-)-Bay K 8644 failed to produce characteristically large increases in current when cells were held at -40 mV and Ca2+ was used as the charge carrier, although high-affinity binding and the effects of the antagonist isomer, R-(+)-Bay K 8644, were intact. Dephosphorylation of the channel with acetylcholine failed to restore the sensitivity of the channel to the drug. Only when the holding potential was shifted to a more hyperpolarized (-60 mV) level, and external Ca2+ was replaced by Ba2+, could large increases in current amplitude be observed. Even under these conditions, increases in current amplitude varied dramatically between different cell lines and channel kinetics following drug addition were generally atypical. The results indicate that the pharmacology of S-(-)-Bay K 8644 in stem cell-derived cardiomyocytes varies by cell type, is unusually dependent on holding potential and charge carrier, and is different from that observed in primary human heart cells.


Assuntos
Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L , Células-Tronco Embrionárias/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Canais de Cálcio Tipo L/fisiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/fisiologia , Cobaias , Humanos , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/fisiologia
6.
J Pharmacol Exp Ther ; 341(2): 510-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22353878

RESUMO

Human stem cell-derived cardiomyocytes provide new models for studying the ion channel pharmacology of human cardiac cells for both drug discovery and safety pharmacology purposes. However, detailed pharmacological characterization of ion channels in stem cell-derived cardiomyocytes is lacking. Therefore, we used patch-clamp electrophysiology to perform a pharmacological survey of the L-type Ca²âº channel in induced pluripotent and embryonic stem cell-derived cardiomyocytes and compared the results with native guinea pig ventricular cells. Six structurally distinct antagonists [nifedipine, verapamil, diltiazem, lidoflazine, bepridil, and 2-[(cis-2-phenylcyclopentyl)imino]-azacyclotridecane hydrochloride (MDL 12330)] and two structurally distinct activators [methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate (Bay K8644) and 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylic acid methyl ester (FPL 64176)] were used. The IC50 values for the six antagonists showed little variability between the three cell types. However, whereas Bay K8644 produced robust increases in Ca²âº channel current in guinea pig myocytes, it failed to enhance current in the two stem cell lines. Furthermore, Ca²âº channel current kinetics after addition of Bay K8644 differed in the stem cell-derived cardiomyocytes compared with native cells. FPL 64176 produced consistently large increases in Ca²âº channel current in guinea pig myocytes but had a variable effect on current amplitude in the stem cell-derived myocytes. The effects of FPL 64176 on current kinetics were similar in all three cell types. We conclude that, in the stem cell-derived myocytes tested, L-type Ca²âº channel antagonist pharmacology is preserved, but the pharmacology of activators is altered. The results highlight the need for extensive pharmacological characterization of ion channels in stem cell-derived cardiomyocytes because these complex proteins contain multiple sites of drug action.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Cobaias , Coração/efeitos dos fármacos , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo
7.
Bioorg Med Chem Lett ; 22(4): 1606-10, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22264487

RESUMO

Tropanylamide was investigated as a possible scaffold for ß-tryptase inhibitors with a basic benzylamine P1 group and a substituted thiophene P4 group. Comparing to piperidinylamide, the tropanylamide scaffold is much more rigid, which presents less opportunity for the inhibitor to bind with off-target proteins, such as cytochrome P450, SSAO, and hERG potassium channel. The proposed binding mode was further confirmed by an in-house X-ray structure through co-crystallization.


Assuntos
Benzilaminas/química , Inibidores Enzimáticos/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Tiofenos/química , Triptases/antagonistas & inibidores , Benzilaminas/farmacologia , Cristalografia por Raios X , Estabilidade de Medicamentos , Canal de Potássio ERG1 , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica/efeitos dos fármacos , Tiofenos/farmacologia
8.
Toxicol Lett ; 208(1): 62-8, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22037396

RESUMO

Mephedrone (4-methylmethcathinone) is a new and popular drug of abuse widely available on the Internet and still legal in some parts of the world. Clinical reports are now emerging suggesting that the drug displays sympathomimetic toxicity on the cardiovascular system but no studies have yet explored its cardiovascular effects. Therefore we examined the effects of mephedrone on the cardiovascular system using a combination of in vitro electrophysiology and in vivo hemodynamic and echocardiographic measurements. Patch clamp studies revealed that mephedrone, up to 30 µM, had little effect on the major voltage-dependent ion channels of the heart or on action potentials recorded in guinea pig myocytes. Subcutaneous administration of mephedrone (3 and 15 mg/kg) to conscious telemetry-implanted rats produced dose-dependent increases in heart rate and blood pressure which persisted after pre-treatment with reserpine. Echocardiographic analysis demonstrated that intravenous injection of mephedrone (0.3 and 1mg/kg) increased cardiac function, including cardiac output, ejection fraction, and stroke volume, similar to methamphetamine (0.3mg/kg). We conclude that mephedrone is not directly pro-arrhythmic, but induces substantial increases in heart rate, blood pressure and cardiac contractility and this activity contributes to the cardiovascular toxicity in people who abuse the drug.


Assuntos
Drogas Desenhadas/toxicidade , Hemodinâmica/efeitos dos fármacos , Drogas Ilícitas/toxicidade , Metanfetamina/análogos & derivados , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ecocardiografia , Técnicas Eletrofisiológicas Cardíacas , Cobaias , Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/induzido quimicamente , Masculino , Metanfetamina/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Taquicardia/induzido quimicamente , Testes de Toxicidade Aguda
9.
Methods Mol Biol ; 691: 151-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20972752

RESUMO

Delayed ventricular repolarization, as measured by a prolongation of the QT interval on the electrocardiogram, is a major safety issue in the drug development process. It is now recognized that most cases of drug-induced QT prolongation arise from direct pharmacological inhibition of the human ether-a-go-go-related gene (HERG) cardiac K+ channel. It is standard practice to test a drug's ability to interact with the HERG channel prior to entry into clinical trials. This testing is used, as part of a larger battery of tests, to help predict the cardiac safety profile of a drug. Manual whole-cell patch-clamping provides the most sensitive and accurate way to examine the biophysical and pharmacological properties of the HERG cardiac K+ channel.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Técnicas de Patch-Clamp/métodos , Animais , Células CHO , Cricetinae , Cricetulus , Canal de Potássio ERG1 , Fenômenos Eletrofisiológicos , Canais de Potássio Éter-A-Go-Go/genética , Humanos
10.
J Pharmacol Exp Ther ; 334(2): 619-26, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20484151

RESUMO

Epigallocatechin-3-gallate (EGCG) is the major catechin found in green tea. EGCG is also available for consumption in the form of concentrated over-the-counter nutritional supplements. This compound is currently undergoing clinical trials for the treatment of a number of diseases including multiple sclerosis, and a variety of cancers. To date, few data exist regarding the effects of EGCG on the electrophysiology of the heart. Therefore, we examined the effects of EGCG on the electrocardiogram recorded from Langendorff-perfused guinea pig hearts and on cardiac ion channels using patch-clamp electrophysiology. EGCG had no significant effects on the electrocardiogram at concentrations of 3 and 10 microM. At 30 microM, EGCG prolonged PR and QRS intervals, slightly shortened the QT interval, and altered the shape of the ST-T-wave segment. The ST segment merged with the upstroke of the T wave, and we noted a prolongation in the time from the peak of the T wave until the end. Patch-clamp studies identified the KvLQT1/minK K(+) channel as a target for EGCG (IC(50) = 30.1 microM). In addition, EGCG inhibited the cloned human cardiac Na(+) channel Na(v)1.5 in a voltage-dependent fashion. The L-type Ca(2+) channel was inhibited by 20.8% at 30 microM, whereas the human ether-a-go-go-related gene and Kv4.3 cardiac K(+) channels were less sensitive to inhibition by EGCG. ECGC has a number of electrophysiological effects in the heart, and these effects may have clinical significance when multigram doses of this compound are used in human clinical trials or through self-ingestion of large amounts of over-the-counter products enriched in EGCG.


Assuntos
Catequina/análogos & derivados , Coração/efeitos dos fármacos , Canais Iônicos/fisiologia , Chá , Animais , Células CHO , Canais de Cálcio Tipo L/fisiologia , Catequina/química , Catequina/farmacologia , Cricetinae , Cricetulus , Eletrocardiografia , Cobaias , Coração/fisiologia , Humanos , Técnicas In Vitro , Ativação do Canal Iônico , Técnicas de Patch-Clamp , Canais de Potássio/fisiologia , Canais de Sódio/fisiologia , Estereoisomerismo
11.
Clin Exp Pharmacol Physiol ; 36(11): 1104-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19413590

RESUMO

Summary 1. The non-selective K(+) channel blocker 4-aminopyridine (4-AP) has shown clinical efficacy in the treatment of neurological disorders such as multiple sclerosis. The clinical usefulness of 4-AP is hampered by its ability to produce seizures. Nerispirdine, an analogue of 4-AP, is currently under clinical investigation for the treatment of multiple sclerosis. In contrast with 4-AP, nerispirdine is not proconvulsant, suggesting mechanistic differences between the two drugs. 2. Using whole-cell patch-clamp electrophysiology, we compared the effects of 4-AP and nerispirdine on the cloned human K(+) channels K(v)1.1 and K(v)1.2, expressed in Chinese hamster ovary cells, and on voltage-dependent Na(+) channels recorded from human SH-SY5Y cells. 3. Nerispirdine inhibited K(v)1.1 and K(v)1.2 with IC(50) values of 3.6 and 3.7 micromol/L, respectively. 4-Aminopyridine was approximately 50-fold less potent at blocking these channels. Nerispirdine also inhibited voltage-dependent Na(+) channel currents recorded from human SH-SY5Y cells with an IC(50) of 11.9 micromol/L when measured from a -70 mV holding potential. In contrast, 4-AP had no effect on Na(+) channel currents. 4. The results demonstrate that nerispirdine, like 4-AP, can inhibit axonal K(+) channels and that this mechanism may underlie the ability of the drug to enhance neuronal conduction. Unlike 4-AP, nerispirdine can also inhibit neuronal Na(+) channels, a mechanism that may explain why nerispirdine lacks proconvulsant activity.


Assuntos
4-Aminopiridina/análogos & derivados , 4-Aminopiridina/farmacologia , Indóis/farmacologia , Canal de Potássio Kv1.1/antagonistas & inibidores , Canal de Potássio Kv1.2/antagonistas & inibidores , Piridinas/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas de Drosophila , Feminino , Humanos , Potenciais da Membrana/efeitos dos fármacos , Superfamília Shaker de Canais de Potássio , Bloqueadores dos Canais de Sódio/farmacologia
12.
Clin Exp Pharmacol Physiol ; 34(12): 1313-6, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17892500

RESUMO

1. Sevoflurane produces QT prolongation on the electrocardiogram, predominantly via inhibition of the slow delayed rectifier K(+) current. DPI 201-106 is an experimental drug that produces QT prolongation by reducing Na(+) channel inactivation, thereby mimicking congenital long QT syndrome type 3 (LQT3). The present study explores the electrophysiological consequences of administration of sevoflurane in the presence of impaired Na(+) channel activity. 2. We examined the effects of sevoflurane and DPI 201-106, alone and in combination, on the cardiac action potential of guinea-pig ventricular myocytes using standard microelectrode techniques. 3. Both sevoflurane and DPI-201-106 prolonged action potential duration, with the combination of the two drugs producing greater than additive effects. Similarly, instability and triangulation of the action potential waveform, measures of pro-arrhythmia, were more pronounced when both drugs were combined. 4. Sevoflurane treatment significantly alters cardiac action potential waveforms when administered in the presence of impaired Na(+) channel inactivation. These results indicate the potential for ventricular arrhythmia when sevoflurane is administered to LQT3 patients and suggests caution when using sevoflurane in this population.


Assuntos
Anestésicos Inalatórios/farmacologia , Cardiotônicos/farmacologia , Síndrome do QT Longo/fisiopatologia , Éteres Metílicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Piperazinas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cobaias , Coração/fisiologia , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/congênito , Masculino , Miócitos Cardíacos/fisiologia , Sevoflurano
13.
Anesthesiology ; 104(5): 1015-22, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16645454

RESUMO

BACKGROUND: Sevoflurane prolongs ventricular repolarization in patients, but the mechanisms are not fully characterized. The effects of sevoflurane on many cloned human cardiac ion channels have not been studied, and the interactions between sevoflurane and other drugs that prolong cardiac repolarization have not been detailed. METHODS: The effects of sevoflurane on action potentials and L-type Ca channels in guinea pig myocytes were examined. Sevoflurane's effects on cloned human cardiac K channels and the cloned human cardiac Na channel were studied. The consequences of combining sevoflurane and the class III antiarrhythmic drugs sotalol or dofetilide on action potential duration were also examined. RESULTS: Sevoflurane produced an increase in action potential duration at concentrations of 0.3-1 mm. Contrary to most drugs that delay ventricular repolarization, sevoflurane was without effect on the human ether-a-go-go-related gene cardiac potassium channel but instead produced a reduction in KvLQT1/minK K channel currents and inhibited the Kv4.3 K channel by speeding its apparent rate of inactivation. Sevoflurane had little effect on Na and Ca channel currents at concentrations of 1 mm or less. When the authors coadministered sevoflurane with sotalol or dofetilide, synergistic effects on repolarization were observed, resulting in large increases in action potential duration (up to 66%). CONCLUSION: Prolonged ventricular repolarization observed with administration of sevoflurane results from inhibition of KvLQT1/minK and Kv4.3 cardiac K channels. Combining sevoflurane with class III antiarrhythmic drugs results in supra-additive effects on action potential duration. The results indicate that sevoflurane, when administered with this class of drug, could result in excessive delays in ventricular repolarization. The results suggest the need for further clinical studies.


Assuntos
Anestésicos Inalatórios/farmacologia , Síndrome do QT Longo/induzido quimicamente , Éteres Metílicos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Antagonistas Adrenérgicos beta/farmacologia , Animais , Antiarrítmicos/farmacologia , Células CHO , Separação Celular , Cricetinae , Interações Medicamentosas , Cobaias , Humanos , Técnicas In Vitro , Canais Iônicos/efeitos dos fármacos , Síndrome do QT Longo/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Fenetilaminas/farmacologia , Sevoflurano , Sotalol/farmacologia , Sulfonamidas/farmacologia
14.
Bioorg Med Chem Lett ; 15(15): 3637-42, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15978804

RESUMO

We report here a general method for the prediction of hERG potassium channel blockers using computational models generated from correlation analyses of a large dataset and pharmacophore-based GRIND descriptors. These 3D-QSAR models are compared favorably with other traditional and chemometric based HQSAR methods.


Assuntos
Modelos Moleculares , Bloqueadores dos Canais de Potássio/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Software , Antiarrítmicos/química , Antiarrítmicos/farmacologia , Sítios de Ligação , Humanos , Concentração Inibidora 50 , Isomerismo , Bloqueadores dos Canais de Potássio/farmacologia , Relação Quantitativa Estrutura-Atividade
15.
J Pharmacol Exp Ther ; 312(1): 316-23, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15340016

RESUMO

The diamidine pentamidine is used to treat leishmaniasis, trypanosomiasis, and Pneumocystis carinii pneumonia. Treatment may be accompanied by prolongation of the QT interval of the electrocardiogram and torsades de pointes tachycardias. Up to now, it has been thought that therapeutic compounds causing QT prolongation are associated with direct block of the cardiac potassium channel human ether a-go-go-related gene (hERG), which encodes the alpha subunit of cardiac I(Kr) currents. We show that pentamidine has no acute effects on currents produced by hERG, KvLQT1/mink, Kv4.3, or SCNA5. Cardiac calcium currents and the guinea pig cardiac action potential were also not affected. After overnight exposure, however, pentamidine reduced hERG currents and inhibited trafficking and maturation of hERG with IC(50) values of 5 to 8 microM similar to therapeutic concentrations. Surface expression determined in a chemiluminescence assay was reduced on exposure to 10, 30, and 100 microM pentamidine by about 30, 40, and 70%, respectively. These effects were specific for hERG since expression of hKv1.5, KvLQT1/minK, and Kv4.3 was not altered. In isolated guinea pig ventricular myocytes, 10 microM pentamidine prolonged action potential duration APD(90) from 374.3 +/- 57.1 to 893.9 +/- 86.2 ms on overnight incubation. I(Kr) tail current density was reduced from 0.61 +/- 0.09 to 0.39 +/- 0.04 pA/pF. We conclude that pentamidine prolongs the cardiac action potential by block of hERG trafficking and reduction of the number of functional hERG channels at the cell surface. We propose that pentamidine, like arsenic trioxide, produces QT prolongation and torsades de pointes in patients by inhibition of hERG trafficking.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Síndrome do QT Longo , Miócitos Cardíacos/efeitos dos fármacos , Pentamidina/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Antifúngicos/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CHO , Proteínas de Transporte de Cátions/antagonistas & inibidores , Células Cultivadas , Cricetinae , Eletrofisiologia , Canais de Potássio Éter-A-Go-Go , Cobaias , Humanos , Miócitos Cardíacos/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores
16.
Mol Pharmacol ; 67(3): 827-36, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15548764

RESUMO

Many drugs inhibit the human ether-a-go-go-related gene (HERG) cardiac K+ channel. This leads to action potential prolongation on the cellular level, a prolongation of the QT interval on the electrocardiogram, and sometimes cardiac arrhythmia. To date, no activators of this channel have been reported. Here, we describe the in vitro electrophysiological effects of (3R,4R)-4-[3-(6-methoxyquinolin-4-yl)-3-oxo-propyl]-1-[3-(2,3,5-trifluoro-phenyl)-prop-2-ynyl]-piperidine-3-carboxylic acid (RPR260243), a novel activator of HERG. Using patch-clamp electrophysiology, we found that RPR260243 dramatically slowed current deactivation when applied to cells stably expressing HERG. The effects of RPR260243 on HERG channel deactivation were temperature- and voltage-dependent and occurred over the concentration range of 1 to 30 microM. RPR260243-modified HERG currents were inhibited by dofetilide (IC50 = 58 nM). RPR260243 had little effect on HERG current amplitude and no significant effects on steady-state activation parameters or on channel inactivation processes. RPR260243 displayed no activator-like effects on other voltage-dependent ion channels, including the closely related erg3 K+ channel. RPR260243 enhanced the delayed rectifier current in guinea pig myocytes but, when administered alone, had little effect on action potential parameters in these cells. However, RPR260243 completely reversed the action potential-prolonging effects of dofetilide in this preparation. Using the Langendorff heart method, we found that 5 microM RPR260243 increased T-wave amplitude, prolonged the PR interval, and shortened the QT interval. We believe RPR260243 represents the first known HERG channel activator and that the drug works primarily by inhibiting channel closure, leading to a persistent HERG channel current upon repolarization. Compounds like RPR260243 will be useful for studying the physiological role of HERG and may one day find use in treating cardiac disease.


Assuntos
Coração/fisiologia , Piperidinas/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Quinolinas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Células CHO , Cricetinae , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Cobaias , Coração/efeitos dos fármacos , Humanos , Técnicas In Vitro , Cinética , Síndrome do QT Longo , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética
18.
J Pharmacol Exp Ther ; 308(3): 935-40, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14711935

RESUMO

Tolterodine is a muscarinic antagonist widely used in the treatment of urinary incontinence. Although tolterodine has not been reported to alter cardiac repolarization, it is chemically related to other muscarinic antagonists known to prolong cardiac repolarization. For this reason, we studied the effects of tolterodine on cardiac ion channels and action potential recordings. Using patch-clamp electrophysiology, we found that tolterodine was a potent antagonist of the human ether-a-go-go-related gene (HERG) K(+) channel, displaying an IC(50) value of 17 nM. This potency was similar to that observed for the antiarrhythmic drug dofetilide (IC(50) of 11 nM). Tolterodine block of HERG displayed a positive voltage dependence, suggesting an interaction with an activated state. Tolterodine had little effect on the human cardiac Na(+) channel at concentrations of up to 1 microM. Inhibition of L-type Ca(2+) currents by tolterodine was frequency-dependent with IC(50) values measuring 143 and 1084 nM at 1 and 0.1 Hz, respectively. Both tolterodine and dofetilide prolonged action potential duration in single guinea pig myocytes over the concentration range of 3 to 100 nM. However, prolongation was significantly larger for dofetilide compared with tolterodine. Tolterodine seems to be an unusual drug in that it blocks HERG with high affinity, but produces little QT prolongation clinically. Low plasma levels after therapeutic doses combined with mixed ion channel effects, most notably Ca(2+) channel blockade, may serve to attenuate the QT prolonging effects of this potent HERG channel antagonist.


Assuntos
Compostos Benzidrílicos/farmacologia , Cresóis/farmacologia , Coração/efeitos dos fármacos , Canais Iônicos/metabolismo , Fenilpropanolamina , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Células CHO , Cricetinae , Eletrofisiologia , Coração/fisiologia , Tartarato de Tolterodina
19.
Bioorg Med Chem Lett ; 13(10): 1829-35, 2003 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-12729675

RESUMO

A data set consisting of twenty-two sertindole analogues and ten structurally diverse inhibitors, spanning a wide range in potency, was analyzed using CoMSiA. A homology model of HERG was constructed from the crystal structure of the open MthK potassium channel. A complementary relationship between our CoMSiA and homology models is apparent when the long inhibitor axis is oriented parallel to the longitudinal axis of the pore, with the tail region pointed toward the selectivity filter. The key elements of the pharmacophore, the CoMSiA and the homology model are: (1) The hydrophobic feature optimally consists of an aromatic group that is capable of engaging in pi-stacking with a Phe656 side chain. Optionally, a second aromatic or hydrophobic group present in some inhibitors may contact an additional Phe656 side chain. (2) The basic nitrogen appears to undergo a pi-cation interaction with Tyr652. (3) The pore diameter (12A+), and depth of the selectivity loop relative to the intracellular opening, act as constraints on the conformation-dependent inhibitor dimensions.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Ligação a DNA , Bloqueadores dos Canais de Potássio/síntese química , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/química , Relação Quantitativa Estrutura-Atividade , Homologia Estrutural de Proteína , Transativadores , Aminoácidos Aromáticos , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/síntese química , Imidazóis/farmacologia , Indóis/síntese química , Indóis/farmacologia , Concentração Inibidora 50 , Modelos Moleculares , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Regulador Transcricional ERG
20.
Eur J Pharmacol ; 458(1-2): 25-9, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12498903

RESUMO

l-alpha-acetylmethadol is a long-acting narcotic analgesic that is used in the treatment of opiate addiction. However, the drug has been associated with cases of QT interval prolongation and ventricular arrhythmia. To understand the mechanism underlying these clinical findings, we examined the effects of l-alpha-acetylmethadol on the cloned human cardiac K(+) channels HERG (human ether-a-go-go-related gene), KvLQT1/minK and Kv4.3. Using patch clamp electrophysiology, we found that l-alpha-acetylmethadol inhibited HERG channel currents in a voltage-dependent manner displaying an IC(50) value of 3 microM. The major active metabolite of l-alpha-acetylmethadol, noracetylmethadol, inhibited HERG with an estimated IC(50) values of 12 microM. l-alpha-acetylmethadol had little or no effect on Kv4.3 or KvLQT1/minK K(+) channel currents at concentration up to 10 microM. We conclude that the proarrhythmic effects of l-alpha-acetylmethadol are due to specific blockade of the HERG cardiac K(+) channel and that its active metabolite noracetylmethadol may provide a safer alternative in the treatment of opiate addiction.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Ligação a DNA , Acetato de Metadil/análogos & derivados , Acetato de Metadil/farmacologia , Entorpecentes/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/fisiologia , Transativadores , Animais , Células CHO , Cricetinae , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Humanos , Potenciais da Membrana/efeitos dos fármacos , Canais de Potássio/genética , Regulador Transcricional ERG
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...