Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 11(6): 3575-3587, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324908

RESUMO

This experiment explored the effects of different proportions of sweet sorghum silage as a substitute for corn silage on dry matter intake (DMI), milk yield, milk quality, apparent digestibility, rumen fermentation parameters, serum amino acid profile, and rumen microbial composition of dairy cows. A total of 32 mid-lactation Holstein dairy cows with similar body weights and parities were randomly divided into four treatments: 100% corn silage +0% sorghum silage (CON), 75% corn silage +25% sorghum silage (CS1), 50% corn silage +50% sorghum silage (CS2), and 25% corn silage +75% sorghum silage (CS3). The milk yield was increased (linear, p = .048) as the proportion of sweet sorghum increased. Linear (p = .003) and quadratic (p = .046) increased effects were observed in milk fat as corn silage was replaced with sorghum silage. Compared with the CON diet group, the CS2 and CS3 diet groups had lower dry matter (DM) (linear, p < .001), ether extract (EE) (linear, p < .001), and gross energy (GE) (linear, p = .001) digestibility of the dairy cows. The ruminal fluid aspartate (Asp) level decreased (linear, p = .003) as the proportion of sweet sorghum increased. Linear (p < .05) and quadratic (p < .05) increased effects were observed for the contents of threonine (Thr), glycine (Gly), valine (Val), leucine (Leu), tyrosine (Tyr), and histidine (His) in rumen fluid with the replacement of corn silage with sorghum silage. Cows fed the CS3 diet had greater Faecalibacterium, Bacteroides, and Prevotella ruminicola content/copy number than those fed the CON diet (p < .05). In conclusion, feeding sorghum silage as a replacement for corn silage could increase the milk yield and fat, promote the growth of rumen microbes, and provide more rumen fluid amino acids for the body and microbial utilization. We believe that sorghum silage is feasible for dairy cows, and it is reasonable to replace corn silage with 75% sorghum silage.

2.
Sci Rep ; 13(1): 2940, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36808140

RESUMO

This study was conducted to determine the response of the reproductive hormones and the mTOR/AKT/PI3K pathway in the ovaries of postpartum dairy cows with dietary rumen-protected glucose (RPG). Twelve Holstein cows were randomly assigned to two groups (n = 6/group): the control group (CT) and the RPG group. Blood samples were collected on d 1, 7, and 14 after calving for the gonadal hormone assay. The expression of the gonadal hormones receptors and PI3K/mTOR/AKT pathways were detected using RT-PCR and Western blot. The RPG addition increased the plasma LH, E2, and P4 concentrations on d 14 after calving and upregulated the mRNA and protein expressions of the ERα, ERß, 17ß-HSD, FSHR, LHR, and CYP17A1 but downregulated StAR expression. Immunohistochemical analysis identified higher expressions of the FSHR and LHR in the ovaries of RPG-fed cows compared to CT cows. Furthermore, the protein expressions of p-AKT/AKT and p-mTOR/mTOR were significantly increased in the ovaries of RPG-fed cows compared to the CT group, but the addition of RPG did not alter the protein expression of p-PI3K/PI3K. In conclusion, the current results indicated that dietary RPG supplementation regulated gonadotropin secretion and stimulated expression of hormone receptors and the mTOR/AKT pathway in the ovaries of early postpartum dairy cows. RPG may be beneficial for the recovery of ovarian activity in post-calving dairy cows.


Assuntos
Glucose , Ovário , Feminino , Humanos , Bovinos , Animais , Ovário/metabolismo , Glucose/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rúmen/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Período Pós-Parto , Hormônios/metabolismo , Dieta/veterinária , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Leite/química , Lactação , Suplementos Nutricionais/análise
3.
Anim Nutr ; 12: 63-71, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36514374

RESUMO

Zinc supplementation in the diet of goats affects pancreas development in offspring. However, the impact of maternal inorganic and organic zinc supplementation in offspring is poorly defined. In this study, 14 late-pregnant goats were assigned at random to the zinc sulfate group (ZnSO4, n = 7) and the zinc-glycine chelate group (Zn-Gly, n = 7), respectively. Serum samples and pancreas tissue were collected from kids whose mothers were fed ZnSO4 and Zn-Gly at the late pregnancy, respectively. Histologic examination showed no morphologic differences between the 2 groups. Pancreatic zinc content in kids tended to be increased when replacing ZnSO4 with Zn-Gly. The serum insulin concentration was greater and glucagon less in the Zn-Gly group when compared to the ZnSO4 group. The activities of lipase and chymotrypsin were enhanced when replacing ZnSO4 with Zn-Gly. Proteomics results showed that 234 proteins were differentially expressed between the 2 groups, some of which were associated with the secretion of insulin, enzyme activity and signal transduction. The results suggested that supply of dietary Zn-Gly to goats during late pregnancy promoted pancreatic function in offspring compared with dietary ZnSO4 supplementation. This provides new information about pancreatic function when supplementing different zinc sources in the diets of late pregnant goats.

4.
Food Sci Nutr ; 10(11): 3749-3758, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36348789

RESUMO

Tea tree oil (TTO) is a plant-derived additive with anti-inflammatory, bactericidal, and growth-promoting properties. However, little is known about the effects of TTO on intestinal amino acid transport and immune function in goats. Twenty-four Ganxi goats (initial body weight of 13.5 ± 0.70 kg) were randomly allotted two treatments and fed either control (CON) or CON+TTO (0.2 ml/kg) diet. The addition of TTO to the diet significantly decreased (p < .05) tumor necrosis factor-α content and increased (p < .05) interleukin-2 (IL-2) content in goat serum; significantly decreased (p < .05) IL-12, and increased (p < .05) IL-2 content in goat ileal mucosa; significantly increased (p < .05) secreted IgA content in the jejunal and ileal mucosa; significantly upregulated (p < .05) IL-2 and downregulated (p < .05) IL-12 at the mRNA level in the ileal mucosa; significantly elevated the levels of serine, arginine, and total amino acids in the ileal mucosa (p < .05); significantly upregulated (p < .05) SLC1A1 and SLC7A1 in the ileum; and significantly enhanced (p < .05) the protein expression of Claudin-1 in the ileal mucosa. In summary, adding 0.2 ml/kg of TTO to the diet enhanced SLC1A1 and SLC7A1 mRNA expression in the ileal mucosa, and SLC1A1 and SLC7A1 could transport serine and arginine from the chyme to the ileal mucosa. Thus, increased serine and arginine content in the mucosa could improve intestinal immunity. TTO supplementation upregulated the expression of IL-2 and Claudin-1 in goat ileal mucosa, and enhanced immune function in the intestine.

5.
Nutrition ; 103-104: 111797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36150333

RESUMO

Maintaining muscle quality throughout life is crucial to human health and well-being. Muscle is the most extensive form of protein storage in the human body; skeletal muscle mass is determined by the balance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB). MPB provides amino acids needed by various organs; however, excessive MPB, especially with aging, may cause loss of muscle mass and a decline in motor function, even threatening life. The turnover of muscle protein is vital to the health of humans. Thus, although the study of MPS and MPB has theoretical and practical significance, the network that controls MPS is very complicated and we cannot discuss both MPS and MPB in a single review. Therefore, the aim of this review is to discuss the regulation of MPS, especially by amino acids. Amino acids regulate protein synthesis in cell and animal models, but compelling evidence for amino acids promoting protein synthesis in human muscles is ambiguous. Studies on the stimulation of human MPS by branched-chain amino acids (BCAAs) have been inconsistent. Amino acids other than BCAAs such as threonine and tryptophan may also have MPS-stimulating effects, and alternatives to BCAAs, such as ß-hydroxy-ß-methyl butyrate and branched-chain keto acids are also worthy of further investigation. Amino acids coordinate protein synthesis and degradation through the mechanistic target of rapamycin complex 1 (mTORC1); however, the amino acid-mTORC1-protein synthesis pathway is complex, and new insights into amino acid control continue to emerge. Understanding how amino acids control MPS is of forward-looking significance for treating muscle mass loss during human aging.


Assuntos
Aminoácidos , Proteínas Musculares , Animais , Humanos , Proteínas Musculares/metabolismo , Aminoácidos/metabolismo , Músculo Esquelético/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
6.
Food Sci Nutr ; 10(7): 2400-2407, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35844930

RESUMO

The study investigated the effect of alfalfa hay substituted with ramie silage on the expression of apoptotic genes in the gastrointestinal tract of goats. Thirty-two goats were randomly allocated into four groups, in which the alfalfa was substituted with ramie at 0%, 35%, 75%, and 100% levels, respectively. In the rumen, the mRNA expression of Bax was significantly up-regulated (p = .0007) when alfalfa was 100% substituted by ramie; the mRNA expression of Bcl-2/Bax was significantly down-regulated (p = .02) when alfalfa was 100% substituted by ramie compared with the 75% substituted treatment; the protein expression of Bcl-xl was significantly down-regulated (p = .03) when alfalfa was 100% substituted by ramie compared with 35% and 75% substituted treatments, respectively. In the jejunum, the mRNA expression of p53 was significantly up-regulated (p = .01) when alfalfa was 100% substituted by ramie compared with 0% and 35% substituted treatments; the protein expression of p53 was significantly up-regulated (p = .001) when alfalfa was 35% substituted by ramie compared with 0% and 75% substituted treatments. However, the activity of Caspase-3 was not affected by different substituting levels of ramie in the rumen and jejunum of goats (p > .05). In conclusion, ramie with high substitution had strong antinutritional effect, which might promote the apoptosis in the gastrointestinal tract of goats in a caspase-independent manner, thus affecting the growth and development of goat. It was suggested that ramie should not replace alfalfa more than 35% in the process of goat feeding.

7.
Animals (Basel) ; 12(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35739870

RESUMO

The colon is a crucial digestive organ of the hind gut in ruminants. The bacterial diversity and mucosal immune maturation in this region are related to age. However, whether the microRNA expression in the colon of goats is affected by age is still unclear. In the current study, we analyzed the transcriptomes of colon microRNAs during preweaning (Day 10 and Day 25) and postweaning (Day 31). A total of 1572 microRNAs were identified in the colon tissues. Of these, 39 differentially expressed microRNAs (DEmiRNAs) and 88 highly expressed microRNAs (HEmiRNAs) were screened. The target genes regulated by the DEmiRNAs and HEmiRNAs were commonly enriched in the MAPK signaling pathway, Wnt signaling pathway, Hippo signaling pathway, cell adhesion molecules, focal adhesion, and adherens junction. Remarkably, the targeted genes of the DEmiRNAs were highly enriched for the prevention of microbial invasion via the Erbb-MAPK network while the targeted genes of HEmiRNAs contributed to the permeable barrier maintenance and cell damage surveillance. Additionally, there were eight different expression profiles of 87 dynamic miRNAs, in which approximately half of them were affected by age. Taken together, our study reveals the different roles of DEmiRNAs, HEmiRNAs, and dynamic microRNAs in the development of the colon and gives new insights into the regulatory mechanism of colon development in goats.

8.
Br J Nutr ; 127(8): 1121-1131, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-34121640

RESUMO

This study was designed to investigate the effects of dietary starch structure on muscle protein synthesis and gastrointestinal amino acid (AA) transport and metabolism of goats. Twenty-seven Xiangdong black female goats (average body weight = 9·00 ± 1·12 kg) were randomly assigned to three treatments, i.e., fed a T1 (normal maize 100 %, high amylose maize 0 %), T2 (normal maize 50 %, high amylose maize 50 %) and T3 (normal maize 0 %, high amylose maize 100 %) diet for 35 d. All AA in the ileal mucosa were decreased linearly as amylose:amylopectin increased in diets (P < 0·05). The plasma valine (linear, P = 0·03), leucine (linear, P = 0·04) and total AA content (linear, P = 0·03) increased linearly with the increase in the ratio of amylose in the diet. The relative mRNA levels of solute carrier family 38 member 1 (linear, P = 0·01), solute carrier family 3 member 2 (linear, P = 0·02) and solute carrier family 38 member 9 (linear, P = 0·02) in the ileum increased linearly with the increase in the ratio of amylose in the diet. With the increase in the ratio of amylose:amylopectin in the diet, the mRNA levels of acetyl-CoA dehydrogenase B (linear, P = 0·04), branched-chain amino acid transferase 1 (linear, P = 0·02) and branched-chain α-keto acid dehydrogenase complex B (linear, P = 0·01) in the ileum decreased linearly. Our results revealed that the protein abundances of phosphorylated mammalian target of rapamycin (p-mTOR) (P < 0·001), phosphorylated 4E-binding protein 1 (P < 0·001) and phosphorylated ribosomal protein S6 kinases 1 (P < 0·001) of T2 and T3 were significantly higher than that of T1. In general, a diet with a high amylose ratio could reduce the consumption of AA in the intestine, allowing more AA to enter the blood to maintain higher muscle protein synthesis through the mTOR pathway.


Assuntos
Amilopectina , Amilose , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Amilopectina/farmacologia , Amilose/farmacologia , Ração Animal/análise , Animais , Dieta/veterinária , Feminino , Cabras/metabolismo , Íleo/metabolismo
9.
Front Microbiol ; 12: 670165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721310

RESUMO

Alfalfa silage is one of the main roughages in the production of dairy cow, which can provide nutrition with high quality to improve milk quality and production. Sucrose additions have been widely used to improve the silage quality. In this study, the effects of sucrose on the fermentation quality and bacterial communities of alfalfa silage were investigated here using 0, 0.5, and 1% sucrose ensiling treatments for 15, 30, and 60 days. The ensiling time significantly decreased the crude fiber content and increased the ammonia nitrogen, acetic acid content, and the relative abundance of Enterococcus in the silages. The 1% sucrose-treated silage at 60 days had the lowest neutral detergent fiber acid, acid detergent fiber, and crude fiber content and the highest relative feed value. Moreover, sucrose-treated silage contained less acetic acid, propionic acid, and butyric acid, and had a lower pH than the controls for each duration. Enterobacteriaceae, Klebsiella, and Enterococcus were the dominant genera in all groups, and the relative abundance of Enterococcus and Lactobacillus was higher in the 1% sucrose-treated group than in the control. These results suggested that sucrose supplementation could improve alfalfa silage quality and increase its beneficial bacterial content.

10.
Anim Nutr ; 7(3): 688-694, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34430723

RESUMO

Ramie (Boehmeria nivea) is noted for the production of a large biomass that has a high protein content and is rich in antioxidants. It may thus serve as a high-quality forage material to replace alfalfa and improve the meat quality of farmed animals. In this study, we evaluated the carcass characteristics and meat quality of goats when 0, 35%, 75%, and 100% of dietary alfalfa was replaced with ramie. Crude protein content (linear, P < 0.0001) and key muscle color values at 24 h after slaughter decreased with increasing ramie levels. The content of most individual amino acids, non-essential amino acids (NEAA), total amino acids (TAA), branched chain amino acids (BCAA), functional amino acids (FAA), and flavor amino acids (DAA) decreased (P < 0.05) with increasing dietary ramie. The diet in which 35% of alfalfa was replaced with ramie yielded meat with the highest amino acid content, whereas the fatty acid profile was unaffected by the inclusion of ramie. These results indicate that ramie could be used as a potential dietary forage resource for goats, and that substituting 35% of alfalfa with ramie, which is equivalent to 126 g/kg DM content, would be optimal in terms of goat meat quality.

11.
Animals (Basel) ; 10(11)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182520

RESUMO

Protein nutrition is particularly important for the self-renewal processes of gastrointestinal epithelial cells. The self-renewal of cells is inseparable from the interaction between apoptosis and autophagy. However, there are few reports on the relationship between different nitrogen sources and apoptosis/autophagy. In this study, the relative protein expression of Bcl-2-associated X protein(Bax), caspase-3, and p62 was significantly higher (p < 0.05), while that of Bcl-xl, Bcl-2, Beclin1, and Microtuble-associated protein light chain 3 (LC3-II) was significantly lower (p < 0.05), in the NH4Cl group in comparison with the NH4Cl + 4-phenylbutyric acid (4PBA) group. In addition, the relative protein expression of Bax and caspase-3 was significantly higher (p < 0.05), while that of Bcl-2 and Bcl-xl was decreased significantly (p < 0.05), in the NH4Cl + 3-Methyladenine (3-MA) group and the methionine (Met) + 3-MA group in comparison with the NH4Cl group. Furthermore, the relative protein expression of Beclin1 and LC3B-II was significantly lower (p < 0.05), while that of p62 was significantly higher (p < 0.05), in the NH4Cl + Z-VAD-FMK group and the Met + Z-VAD-FMK group in comparison with the NH4Cl group. In conclusion, our results suggested that endoplasmic reticulum (ER) stress played a critical role in the crosstalk between apoptosis and autophagy induced by NH4Cl and Met. Autophagy had a more obvious ameliorative effect on ruminal epithelial cell apoptosis after treatment with nonprotein nitrogen than after treatment with protein nitrogen. These findings may reveal the molecular mechanism of apoptosis and autophagy induced by nonprotein nitrogen and protein nitrogen.

12.
Pak J Pharm Sci ; 33(3): 1063-1072, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33191230

RESUMO

To evaluate the inhibitory effect of chlorogenic acid on the forming of type 2 diabetes mellitus (T2DM), using Sprague Dawley (SD) rats, a recognized T2DM model induced by high-fat high-sucrose diet (HFSD) and streptozotocin (STZ). Thirty female SD rats were assigned equally to three groups randomly: normal control with standard commercial (NC), chlorogenic acid treatment with HFSD and chlorogenic acid (90mg/kg, CA), and diabetes model with HFSD (DM). Upon treatment with chlorogenic acid, suppression of the onset of diabetes, reduced serum glucose and insulin concentrations, improved glucose tolerance and increased body weight and visceral fat weight were observed. Serum triglyceride, total cholesterol, low density lipoprotein levels, and kidney and pancreas morphology were significantly ameliorated. Chlorogenic acid also inhibited the mRNA levels of hepatic G-6-Pase and up-regulated the mRNA levels of skeletal muscle GLUT4. Our results indicated that before the onset of diabetes, chlorogenic acid had an inhibitory effect against the forming of T2DM induced by HFSD and STZ through regulating the glucose and lipid metabolism.


Assuntos
Glicemia/efeitos dos fármacos , Ácido Clorogênico/farmacologia , Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 2/prevenção & controle , Hipoglicemiantes/farmacologia , Adiposidade/efeitos dos fármacos , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/fisiopatologia , Dieta Hiperlipídica , Feminino , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Insulina/sangue , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/fisiopatologia , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos Sprague-Dawley , Estreptozocina , Aumento de Peso
13.
Animals (Basel) ; 10(2)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102173

RESUMO

This study aimed to elucidate the effects of a dietary rumen-protected glucose (RPG) addition on uterine involution through the analysis of an insulin-like growth factor (IGF) system and associated pathways in the post-natal endometrium. Twelve Holstein cows were assigned equally to two groups: a control group (CT) and an RPG group (200 g of RPG per cow per day). The plasma content of insulin-like growth factor 1 (IGF1) was determined by using the ELISA method. Expressions of IGF members, the matrix metalloproteinase, protein kinase B (AKT)/mechanistic target of rapamycin complex1 (mTOR) signaling pathway, and cell proliferation factors (proliferating cell nuclear antigen (PCNA) and Ki67) were detected using real-time polymerase chain reaction, Western blot, immunohistochemistry, and immunofluorescence, respectively. The results showed that the positive cells of PCNA and Ki67 were increased in the endometrium of RPG versus CT cows. The RPG addition significantly increased the plasma IGF1 level 14 d after delivery. The mRNA expressions of the IGF family members (IGF1, IGF2, type 1 IGF receptor (IGF1R) and IGF-binding proteins (IGFBP1, IGFBP2, IGFBP4 and IGFBP5)) were upregulated, and mRNA expressions of matrix metalloproteinase MMP3 and MMP9 were downregulated in cows from the RPG group compared with the CT group. Meanwhile, the protein expressions of IGF1, IGF2, IGF1R, IGFBP1 and IGFBP4 were upregulated in cows from the RPG group compared with the CT group. Immunohistochemical analysis identified a positive response for IGF1R and IGF2R in the endometrium of RPG versus CT cows. Furthermore, the RPG supplementation increased the protein expressions of phosphorylated (p)-AKT to total AKT and p-mTOR to total mTOR ratio in the endometrium. The current results indicated that the RPG supplementation promoted the proliferation of endometrial cells by stimulating the IGFs and mTOR/AKT pathway in the early post-natal endometrium of dairy cows.

14.
PeerJ ; 7: e7840, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649832

RESUMO

BACKGROUND: In developing countries, maternal undernutrition is the major intrauterine environmental factor contributing to fetal development and adverse pregnancy outcomes. Maternal nutrition restriction (MNR) in gestation has proven to impact overall growth, bone development, and proliferation and metabolism of mesenchymal stem cells in offspring. However, the efficient method for elucidation of fetal bone development performance through maternal bone metabolic biochemical markers remains elusive. METHODS: We adapted goats to elucidate fetal bone development state with maternal serum bone metabolic proteins under malnutrition conditions in mid- and late-gestation stages. We used the experimental data to create 72 datasets by mixing different input features such as one-hot encoding of experimental conditions, metabolic original data, experimental-centered features and experimental condition probabilities. Seven Machine Learning methods have been used to predict six fetal bone parameters (weight, length, and diameter of femur/humerus). RESULTS: The results indicated that MNR influences fetal bone development (femur and humerus) and fetal bone metabolic protein levels (C-terminal telopeptides of collagen I, CTx, in middle-gestation and N-terminal telopeptides of collagen I, NTx, in late-gestation), and maternal bone metabolites (low bone alkaline phosphatase, BALP, in middle-gestation and high BALP in late-gestation). The results show the importance of experimental conditions (ECs) encoding by mixing the information with the serum metabolic data. The best classification models obtained for femur weight (Fw) and length (FI), and humerus weight (Hw) are Support Vector Machines classifiers with the leave-one-out cross-validation accuracy of 1. The rest of the accuracies are 0.98, 0.946 and 0.696 for the diameter of femur (Fd), diameter and length of humerus (Hd, Hl), respectively. With the feature importance analysis, the moving averages mixed ECs are generally more important for the majority of the models. The moving average of parathyroid hormone (PTH) within nutritional conditions (MA-PTH-experim) is important for Fd, Hd and Hl prediction models but its removal for enhancing the Fw, Fl and Hw model performance. Further, using one feature models, it is possible to obtain even more accurate models compared with the feature importance analysis models. In conclusion, the machine learning is an efficient method to confirm the important role of PTH and BALP mixed with nutritional conditions for fetal bone growth performance of goats. All the Python scripts including results and comments are available into an open repository at https://gitlab.com/muntisa/goat-bones-machine-learning.

15.
Animals (Basel) ; 9(7)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266191

RESUMO

Changes in the environment such as high-altitude hypoxia (HAH) high-altitude hypoxia can lead to adaptive changes in the blood system of mammals. However, there is limited information about the adaptation of Holstein dairy cows introduced to high-altitude areas. This study used 12 multiparous Holstein dairy cows (600 ± 55 kg, average three years old) exposed to HAH conditions in Nyingchi of Tibet (altitude 3000 m) and HAH-free conditions in Shenyang (altitude 50 m). The miRNA microarray analysis and iTRAQ proteomics approach (accepted as more suitable for accurate and comprehensive prediction of miRNA targets) were applied to explore the differences in the plasma proteomic and miRNA profiles in Holstein dairy cows. A total of 70 differential miRNAs (54 up-regulated, Fold change (FC) FC > 2, and 16 down-regulated, FC < 0.5) and 226 differential proteins (132 up-regulated, FC > 1.2, and 94 down-regulated, FC < 0.8) were found in the HAH-stressed group compared with the HAH-free group. Integrative analysis of proteomic and miRNA profiles demonstrated the biological processes associated with differential proteins were the immune response, complement activation, protein activation, and lipid transport. The integrative analysis of canonical pathways were most prominently associated with the APR signaling (z = 1.604), and LXR/RXR activation (z = 0.365), and FXR/RXR activation (z = 0.446) pathways. The current results indicated that Holstein dairy cows exposed to HAH could adapt to high-altitude hypoxia by up-regulating the APR, activating the LXR/RXR and FXE/RXR pathways.

16.
Int J Mol Sci ; 19(11)2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428630

RESUMO

Increasing evidence suggests that the gut microbiota plays vital roles in metabolic diseases. Polygonatum odoratum extract alleviates hyperglycemia and hyperlipidemia, but the underlying mechanism remains unclear. This study investigated the effects of P. odoratum polysaccharides (POPs) on high-fat diet (HFD)-induced obesity in rats and whether these effects were related to modulation of gut microbiota. POP treatment attenuated weight gain, fat accumulation, epididymal adipocyte size, liver triglycerides, and total liver cholesterol content in HFD-fed rats. POP administration also increased short-chain fatty acids (SCFAs), including isobutyric acid, butyric acid, and valeric acid. POP upregulated the expression of genes involved in adipocyte differentiation (Pparg, Cebpa, Cebpb) and lipolysis (Ppara, Atgl), and downregulated those related to lipid synthesis (Srebpf1, Fabp4, Fas), with corresponding changes in PPARγ and FABP4 protein expression. Finally, POP enhanced species richness and improved the gut microbiota community structure, reducing the relative abundances of Clostridium, Enterococcus, Coprobacillus, Lactococcus, and Sutterella. Principal coordinates analysis (PCoA) revealed a clear separation between HFD-fed rats and all other treatment groups. Correlation analysis identified negative and positive associations between obesity phenotypes and 28 POP-influenced operational taxonomic units (OTUs), including putative SCFA-producing bacteria. Our data suggest that POP supplementation may attenuate features of obesity in HFD-fed rats in association with the modulation of gut microbiota.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Polygonatum/química , Polissacarídeos/uso terapêutico , Animais , Dieta Hiperlipídica/efeitos adversos , Trato Gastrointestinal/microbiologia , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
17.
J Membr Biol ; 249(6): 743-756, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27469350

RESUMO

Free fatty acids (FFAs) in plasma are essential substrates for de novo synthesis of milk fat, or directly import into mammary cells. The physico-chemical properties of mammary cells membrane composition affected by FFAs with different chain lengths and saturability are unclear yet. Employing GC, FTIR and fluorescence spectroscopy, the adsorption capacity, phospholipids content, membrane proteins conformation, lipid peroxidation product, and free sulfhydryl of plasma membranes (PMs) interacted with different FFAs were determined. The mammary cells PMs at 38 and 39.5 °C showed different adsorption capacities: acetic acid (Ac) > stearic acid (SA) > ß-hydroxybutyric acid (BHBA) > trans10, cis12 CLA. In the FTIR spectrum, the major adsorption peaks appeared at 2920 and 2850 cm-1 for phospholipids, and at 1628 and 1560 cm-1 for membrane proteins. The intensities of PMs-FFAs complexes were varied with the FFAs species and their initial concentrations. The ß-sheet and turn structures of membrane proteins were transferred into random coil and α-helix after BHBA, SA and trans10, cis12 CLA treatments compared with Ac treatment. The quenching effects on the fluorescence of endogenous membrane protein, 1, 8-ANS, NBD-PE, and DHPE entrapped in PMs by LCFA were different from those of short chain FFAs. These results indicate that the adsorption of FFAs could change membrane protein conformation and polarity of head group in phospholipids. This variation of the mammary cells PMs was regulated by carbon chain length and saturability of FFAs.


Assuntos
Ácidos Graxos/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo , Animais , Bovinos , Membrana Celular/metabolismo , Ácidos Graxos/química , Ácidos Graxos não Esterificados/metabolismo , Feminino , Proteínas de Membrana/química , Fosfolipídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
18.
PLoS One ; 11(6): e0156835, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27299526

RESUMO

A series of batch cultures were conducted to investigate the effects of oleic acid (OA) on in vitro ruminal dry matter degradability (IVDMD), gas production, methane (CH4) and hydrogen (H2) production, and proportion of fatty acids. Rumen fluid was collected from fistulated goats, diluted with incubation buffer, and then incubated with 500 mg Leymus chinensis meal supplemented with different amounts of OA (0, 20, 40, and 60 mg for the CON, OA20, OA40 and OA60 groups, respectively). Incubation was carried out anaerobically at 39°C for 48 h, and the samples were taken at 12, 24 and 48 h and subjected to laboratory analysis. Supplementation of OA decreased IVDMD, the cumulative gas production, theoretical maximum of gas production and CH4 production, but increased H2 production. However, no effect was observed on any parameters of rumen fermentation (pH, ammonia, production of acetate, propionate and butyrate and total volatile fatty acid production). The concentrations of some beneficial fatty acids, such as cis monounsaturated fatty acids and conjugated linoleic acid (CLA) were higher (P < 0.05) from OA groups than those from the control group at 12 h incubation. In summary, these results suggest that the OA supplementation in diet can reduce methane production and increase the amount of some beneficial fatty acids in vitro.


Assuntos
Ácidos Graxos/metabolismo , Fermentação , Cabras/fisiologia , Ácido Oleico/metabolismo , Rúmen/fisiologia , Acetatos/metabolismo , Amônia/metabolismo , Ração Animal/análise , Animais , Suplementos Nutricionais/análise , Ácidos Graxos Voláteis/metabolismo , Hidrogênio/metabolismo , Metano/metabolismo , Propionatos/metabolismo
19.
Asian-Australas J Anim Sci ; 29(4): 500-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26949950

RESUMO

This study was conducted to investigate the effects of Momordica charantia saponin (MCS) on ruminal fermentation of maize stover and abundance of selected microbial populations in vitro. Five levels of MCS supplements (0, 0.01, 0.06, 0.30, 0.60 mg/mL) were tested. The pH, NH3-N, and volatile fatty acid were measured at 6, 24, 48 h of in vitro mixed incubation fluids, whilst the selected microbial populations were determined at 6 and 24 h. The high dose of MCS increased the initial fractional rate of degradation at t-value = 0 (FRD0) and the fractional rate of gas production (k), but decreased the theoretical maximum of gas production (V F) and the half-life (t0.5) compared with the control. The NH3-N concentration reached the lowest concentration with 0.01 mg MCS/mL at 6 h. The MSC inclusion increased (p<0.001) the molar proportion of butyrate, isovalerate at 24 h and 48 h, and the molar proportion of acetate at 24 h, but then decreased (p<0.05) them at 48 h. The molar proportion of valerate was increased (p<0.05) at 24 h. The acetate to propionate ratio (A/P; linear, p<0.01) was increased at 24 h, but reached the least value at the level of 0.30 mg/mL MCS. The MCS inclusion decreased (p<0.05) the molar proportion of propionate at 24 h and then increased it at 48 h. The concentration of total volatile fatty acid was decreased (p<0.001) at 24 h, but reached the greatest concentration at the level of 0.01 mg/mL and the least concentration at the level of 0.60 mg/mL. The relative abundance of Ruminococcus albus was increased at 6 h and 24 h, and the relative abundance of Fibrobacter succinogenes was the lowest (p<0.05) at 0.60 mg/mL at 6 h and 24 h. The relative abundance of Butyrivibrio fibrisolvens and fungus reached the greatest value (p<0.05) at low doses of MCS inclusion and the least value (p<0.05) at 0.60 mg/mL at 24 h. The present results demonstrates that a high level of MCS quickly inhibits in vitro fermentation of maize stover, while MCS at low doses has the ability to modulate the ruminal fermentation pattern by regulating the number of functional rumen microbes including cellulolytic bacteria and fungi populations, and may have potential as a feed additive applied in the diets of ruminants.

20.
Asian-Australas J Anim Sci ; 29(2): 230-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26732448

RESUMO

Information on the effects of different yeast species on ruminal fermentation is limited. This experiment was conducted in a 3×4 factorial arrangement to explore and compare the effects of addition of three different live yeast species (Candida utilis 1314, Saccharomyces cerevisiae 1355, and Candida tropicalis 1254) at four doses (0, 0.25×10(7), 0.50×10(7), and 0.75×10(7) colony-forming unit [cfu]) on in vitro gas production kinetics, fiber degradation, methane production and ruminal fermentation characteristics of maize stover, and rice straw by mixed rumen microorganisms in dairy cows. The maximum gas production (Vf), dry matter disappearance (IVDMD), neutral detergent fiber disappearance (IVNDFD), and methane production in C. utilis group were less (p<0.01) than other two live yeast supplemented groups. The inclusion of S. cerevisiae reduced (p<0.01) the concentrations of ammonia nitrogen (NH3-N), isobutyrate, and isovalerate compared to the other two yeast groups. C. tropicalis addition generally enhanced (p<0.05) IVDMD and IVNDFD. The NH3-N concentration and CH4 production were increased (p<0.05) by the addition of S. cerevisiae and C. tropicalis compared with the control. Supplementation of three yeast species decreased (p<0.05) or numerically decreased the ratio of acetate to propionate. The current results indicate that C. tropicalis is more preferred as yeast culture supplements, and its optimal dose should be 0.25×10(7) cfu/500 mg substrates in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...