Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 445: 130559, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055968

RESUMO

Slow oil sorption speed of commercial non-woven polypropylene (PP) sorbent remains a major challenge for efficient clean-up of oil spillage. Adsorption-based polymeric sponge oil removing offers an appealing way to solve this challenge by increasing surface area. However, the tortuous oil sorption path and plastic waste after oil uptake are two long-standing bottlenecks for realizing efficient oil spill removal. Here, we report a vertically aligned-biomass fiber junctioned sorbents (a-BFJS), by confining delignified biomass with carbon nanotube (CNT), polyvinyl alcohol (PVA), and methyltrimethoxysilane (MTMS). The sorbent shows an excellent performance towards xylene sorption capacity with uptake about 50 g g-1 within 10 s. This is due to the wide and short pathway of their aligned channels, which improves the capillary effect and fast oil transport in the oriented channels. Moreover, the sponge exhibits fast oil sorption-desorption kinetics enabled by simple mechanical squeezing. We further engineered a scalable rapid continuous oil skimming with simple peristaltic pump. The oil recovering using a-BFJS realized high oil selectivity from xylene/water emulsion. Our demonstration of the high-performance aligned channel sorbent and scalable oil removing sponge offers an eco-friendly and promising strategy for efficiently removing oil from oil spills from water.

2.
Sensors (Basel) ; 17(5)2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28467390

RESUMO

Drones are broadening their scope to various applications such as networking, package delivery, agriculture, rescue, and many more. For proper operation of drones, reliable communication should be guaranteed because drones are remotely controlled. When drones experience communication failure due to bad channel condition, interference, or jamming in a certain area, one existing solution is to exploit mobility or so-called spatial retreat to evacuate them from the communication failure area. However, the conventional spatial retreat scheme moves drones in random directions, which results in inefficient movement with significant evacuation time and waste of battery lifetime. In this paper, we propose a novel spatial retreat technique that takes advantage of cooperation between drones for resilient networking, which is called cooperative spatial retreat (CSR). Our performance evaluation shows that the proposed CSR significantly outperforms existing schemes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...