Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(16): e2400304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408158

RESUMO

Interest has grown in services that consume a significant amount of energy, such as large language models (LLMs), and research is being conducted worldwide on synaptic devices for neuromorphic hardware. However, various complex processes are problematic for the implementation of synaptic properties. Here, synaptic characteristics are implemented through a novel method, namely side chain control of conjugated polymers. The developed devices exhibit the characteristics of the biological brain, especially spike-timing-dependent plasticity (STDP), high-pass filtering, and long-term potentiation/depression (LTP/D). Moreover, the fabricated synaptic devices show enhanced nonvolatile characteristics, such as long retention time (≈102 s), high ratio of Gmax/Gmin, high linearity, and reliable cyclic endurance (≈103 pulses). This study presents a new pathway for next-generation neuromorphic computing by modulating conjugated polymers with side chain control, thereby achieving high-performance synaptic properties.


Assuntos
Polímeros , Sinapses , Polímeros/química , Sinapses/fisiologia , Plasticidade Neuronal/fisiologia , Redes Neurais de Computação
2.
Ultrason Sonochem ; 100: 106620, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757600

RESUMO

Lithium-ion batteries (LIBs) stand as a compelling solution to energy source transition in various applications such as the vehicle industry due to their energy and power density. However, the impact of mechanical factors on them remains understudied. Of particular interest is the effect of vibration, an inherent characteristic of vehicles, on battery performance. Ultrasound has been reported to improve mass transfer and surface cleaning, yet its effects on LIBs are still not thoroughly investigated. This study investigates the influence of ultrasound on the solid electrolyte interphase (SEI) layer, resulting in a thin, inorganic-rich layer. The induced SEI layer alteration improves charge transfer, showing enhanced kinetics. We also reveal that ultrasound application enhances cycling stability, maintains discharge capacity at high charging rates, and facilitates inorganic-rich SEI layer creation. This novel combination of ultrasound and LIBs presents a promising pathway for achieving high-performance batteries.

3.
Adv Mater ; 35(45): e2303787, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37466919

RESUMO

5 V-class LiNi0.5 Mn1.5 O4 (LNMO) with its spinel symmetry is a promising cathode material for lithium-ion batteries. However, the high-voltage operation of LNMO renders it vulnerable to interfacial degradation involving electrolyte decomposition, which hinders long-term and high-rate cycling. Herein, this longstanding challenge presented by LNMO is overcome by incorporating a sacrificial binder, namely, λ-carrageenan (CRN), a sulfated polysaccharide. This binder not only uniformly covers the LNMO surface via hydrogen bonding and ion-dipole interaction but also offers an ionically conductive cathode-electrolyte interphase layer containing LiSOx F, a product of the electrochemical decomposition of the sulfate group. Taking advantage of these two auspicious properties, the CRN-based electrode exhibits cycling and rate performance far superior to that of its counterparts based on the conventional poly(vinylidene difluoride) and sodium alginate binders. This study introduces a new concept, namely "sacrificial" binder, for battery electrodes known to deliver superior electrochemical performance but be adversely affected by interfacial instability.

4.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446614

RESUMO

Annually, millions of new cancer cases are reported, leading to millions of deaths worldwide. Among the newly reported cases, breast and colon cancers prevail as the most frequently detected variations. To effectively counteract this rapid increase, the development of innovative therapies is crucial. Small molecules possessing pyridine and urea moieties have been reported in many of the currently available anticancer agents, especially VEGFR2 inhibitors. With this in mind, a rational design approach was employed to create hybrid small molecules combining urea and pyridine. These synthesized compounds underwent in vitro testing against breast and colon cancer cell lines, revealing potent submicromolar anticancer activity. Compound 8a, specifically, exhibited an impressive GI50 value of 0.06 µM against the MCF7 cancer cell line, while compound 8h displayed the highest cytotoxic activity against the HCT116 cell line, with a GI50 of 0.33 ± 0.042 µM. Notably, compounds 8a, 8h, and 8i demonstrated excellent safety profiles when tested on normal cells. Molecular docking, dynamic studies, and free energy calculations were employed to validate the affinity of these compounds as VEGFR2 inhibitors.


Assuntos
Antineoplásicos , Neoplasias do Colo , Humanos , Ureia/farmacologia , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Piridinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Estrutura Molecular
5.
ACS Appl Mater Interfaces ; 15(5): 7002-7013, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36710651

RESUMO

Aqueous zinc-based redox flow batteries are promising large-scale energy storage applications due to their low cost, high safety, and environmental friendliness. However, the zinc dendritic growth has depressed the cycle performance, stability, and efficiency, hindering the commercialization of the zinc-based redox flow batteries. We fabricate the carbon felt modified with bimodal sized tin and copper clusters (SCCF) with the electrometallic synthesis in a continuous-flow cell. The SCCF electrode provides a larger zinc nucleation area and lower overpotential than pristine carbon felt, which is ascribed to the well-controlled interfacial interaction of bimodal tin and copper particle clusters by suppressing unwanted alloy formation. The zinc symmetric flow battery and the zinc-based hybrid redox flow battery show the improved zinc plating and stripping efficiency. The SCCF electrode exhibits 75% improved cycling stability compared to the pristine carbon felt electrode in the zinc symmetric flow battery. Notably, the high-voltage aqueous zinc-vanadium redox flow battery demonstrates a high average cell voltage of 2.31 V at 40 mA cm-2, showing a Coulombic efficiency of 99.9% and an energy efficiency of 87.6% for 100 cycles. We introduce a facile strategy to suppress the zinc dendritic growth, enhancing the performance of the zinc-based redox flow batteries.

6.
Nat Commun ; 13(1): 4629, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941110

RESUMO

Lithium-sulfur batteries have theoretical specific energy higher than state-of-the-art lithium-ion batteries. However, from a practical perspective, these batteries exhibit poor cycle life and low energy content owing to the polysulfides shuttling during cycling. To tackle these issues, researchers proposed the use of redox-inactive protective layers between the sulfur-containing cathode and lithium metal anode. However, these interlayers provide additional weight to the cell, thus, decreasing the practical specific energy. Here, we report the development and testing of redox-active interlayers consisting of sulfur-impregnated polar ordered mesoporous silica. Differently from redox-inactive interlayers, these redox-active interlayers enable the electrochemical reactivation of the soluble polysulfides, protect the lithium metal electrode from detrimental reactions via silica-polysulfide polar-polar interactions and increase the cell capacity. Indeed, when tested in a non-aqueous Li-S coin cell configuration, the use of the interlayer enables an initial discharge capacity of about 8.5 mAh cm-2 (for a total sulfur mass loading of 10 mg cm-2) and a discharge capacity retention of about 64 % after 700 cycles at 335 mA g-1 and 25 °C.

7.
Cancers (Basel) ; 13(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066916

RESUMO

In the Cancers paper, we observed the increase ALDH1L1 protein expression following oncogenesis, as well as a therapeutic effect, by deleting the Aldh1l1 gene in KrasLA2 mice, a model of spontaneous non-small cell lung cancer (NSCLC) [...].

8.
J Phys Chem Lett ; 12(25): 6000-6006, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34165310

RESUMO

Machine-learning (ML) techniques have drawn an ever-increasing focus as they enable high-throughput screening and multiscale prediction of material properties. Especially, ML force fields (FFs) of quantum mechanical accuracy are expected to play a central role for the purpose. The construction of ML-FFs for polymers is, however, still in its infancy due to the formidable configurational space of its composing atoms. Here, we demonstrate the effective development of ML-FFs using kernel functions and a Gaussian process for an organic polymer, polytetrafluoroethylene (PTFE), with a data set acquired by first-principles calculations and ab initio molecular dynamics (AIMD) simulations. Even though the training data set is sampled only with short PTFE chains, structures of longer chains optimized by our ML-FF show an excellent consistency with density functional theory calculations. Furthermore, when integrated with molecular dynamics simulations, the ML-FF successfully describes various physical properties of a PTFE bundle, such as a density, melting temperature, coefficient of thermal expansion, and Young's modulus.

9.
Phys Chem Chem Phys ; 20(38): 24539-24544, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30106069

RESUMO

An elegant machine-learning-based algorithm was applied to study the thermo-electrochemical properties of ternary nanocatalysts for oxygen reduction reaction (ORR). High-dimensional neural network potentials (NNPs) for the interactions among the components were parameterized from big dataset established by first-principles density functional theory calculations. The NNPs were then incorporated with Monte Carlo (MC) and molecular dynamics (MD) simulations to identify not only active, but also electrochemically stable nanocatalysts for ORR in acidic solution. The effects of surface strain caused by selective segregation of certain components on the catalytic performance were accurately characterized. The computationally efficient and precise approach proposes a promising ORR candidate: 2.6 nm icosahedron comprising 60% of Pt and 40% Ni/Cu. Our methodology can be applied for high-throughput screening and designing of key functional nanomaterials to drastically enhance the performance of various electrochemical systems.

10.
Phys Chem Chem Phys ; 20(17): 11592-11597, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29588999

RESUMO

The solid electrolyte interphase (SEI) of Li-ion batteries (LIBs) has been extensively studied, with most research focused on the anode, because of its significant impact on the prolonged cycle life, initial capacity loss, and safety issues. Using first-principles density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations with the Hubbard correction, we examine the thermodynamic structure prediction and electrochemical stability of a spinel LiMn2O4 cathode interfaced with a carbonate electrolyte. The electronic energy levels of frontier orbitals of the electrolyte and the work function of the cathode offer clear characterization of the interfacial reactions. Our results based on both DFT calculations and AIMD simulations propose that the proton transfer mechanism at the hybrid interface is essential for initiating the SEI layer formation on the LiMn2O4 surface. Our results can be useful for identifying design concepts in the development of stable and high capacity LIBs with optimized electrodes and high-performance electrolytes.

11.
J Hazard Mater ; 341: 457-463, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28854386

RESUMO

Using first principles calculations we unveil fundamental mechanism of hydrolysis reactions of two hazardous chemicals PCl3 and POCl3 with explicit molecular water clusters nearby. It is found that the water molecules play a key role as a catalyst significantly lowing activation barrier of the hydrolysis via transferring its protons to reaction intermediates. Interestingly, torsional angle of the molecular complex at transition state is identified as a vital descriptor on the reaction rate. Analysis of charge distribution over the complex further reinforces the finding with atomic level correlation between the torsional angle and variation of the orbital hybridization state of phosphorus (P) in the complex. Electronic charge separation (or polarization) enhances thermodynamic stability of the activated complex and reduces the activation energy through hydrogen bonding network with water molecules nearby. Calculated potential energy surfaces (PES) for the hydrolysis of PCl3 and POCl3 depict their two contrastingly different profiles of double- and triple-depth wells, respectively. It is ascribed to the unique double-bonding O=P in the POCl3. Our results on the activation free energy show well agreements with previous experimental data within 7kcalmol-1 deviation.

12.
ACS Appl Mater Interfaces ; 9(44): 38445-38454, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29035030

RESUMO

The critical issues that hinder the practical applications of lithium-sulfur batteries, such as dissolution and migration of lithium polysulfides, poor electronic conductivity of sulfur and its discharge products, and low loading of sulfur, have been addressed by designing a functional separator modified using hydroxyl-functionalized carbon nanotubes (CNTOH). Density functional theory calculations and experimental results demonstrate that the hydroxyl groups in the CNTOH provoked strong interaction with lithium polysulfides and resulted in effective trapping of lithium polysulfides within the sulfur cathode side. The reduction in migration of lithium polysulfides to the lithium anode resulted in enhanced stability of the lithium electrode. The conductive nature of CNTOH also aided to efficiently reutilize the adsorbed reaction intermediates for subsequent cycling. As a result, the lithium-sulfur cell assembled with a functional separator exhibited a high initial discharge capacity of 1056 mAh g-1 (corresponding to an areal capacity of 3.2 mAh cm-2) with a capacity fading rate of 0.11% per cycle over 400 cycles at 0.5 C rate.

13.
Phys Chem Chem Phys ; 18(47): 32050-32056, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27791215

RESUMO

We study removal of gas-phase organic methyl iodide (CH3I) from an ambient environment via adsorption onto triethylenediamine (TEDA) impregnated activated carbon (AC). First principles density functional theory (DFT) calculations and ab-initio molecular dynamics (AIMD) simulations were extensively utilized to understand the underlying mechanism for the chemical reaction of CH3I on the surface. Our results suggest that the adsorption energy of CH3I shows substantial heterogeneity depending on the adsorption site, porosity of the AC, and humidity. It is observed that the CH3I dissociative chemisorption is largely influenced by the adsorption site and porosity. Most importantly, it is clearly shown through free energy diagrams that the impregnated TEDA not only reduces the dissociation activation barrier of CH3I but also attracts H2O molecules relieving the AC surface from poisoning by humidity, and also enhances the removal efficiency of CH3I through the chemical dissociation reaction. Our computational study can help to open new routes to design highly efficient materials for removing environmentally and biologically hazardous materials, for example radioactive iodine gas emitted following accidents at a nuclear power plant.

14.
J Phys Chem Lett ; 7(14): 2803-8, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27392527

RESUMO

Using first-principles density functional theory (DFT) calculations, we demonstrate that catalytic activities toward oxygen reduction and evolution reactions (ORR and OER) in a Li-O2 battery can be substantially improved with graphene-based materials. We accomplish the goal by calculating free energy diagrams for the redox reactions of oxygen to identify a rate-determining step controlling the overpotentials. We unveil that the catalytic performance is well described by the adsorption energies of the intermediates LiO2 and Li2O2 and propose that graphene-based materials can be substantially optimized through either by N doping or encapsulating Cu(111) single crystals. Furthermore, our systematic approach with DFT calculations applied to design of optimum catalysts enables screening of promising candidates for the oxygen electrochemistry leading to considerable improvement of efficiency of a range of renewable energy devices.

15.
Sci Rep ; 6: 27218, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264788

RESUMO

Here, we present oxygen-deficient black ZrO2-x as a new material for sunlight absorption with a low band gap around ~1.5 eV, via a controlled magnesiothermic reduction in 5% H2/Ar from white ZrO2, a wide bandgap(~5 eV) semiconductor, usually not considered for solar light absorption. It shows for the first time a dramatic increase in solar light absorbance and significant activity for solar light-induced H2 production from methanol-water with excellent stability up to 30 days while white ZrO2 fails. Generation of large amounts of oxygen vacancies or surface defects clearly visualized by the HR-TEM and HR-SEM images is the main reason for the drastic alteration of the optical properties through the formation of new energy states near valence band and conduction band towards Fermi level in black ZrO2-x as indicated by XPS and DFT calculations of black ZrO2-x. Current reduction method using Mg and H2 is mild, but highly efficient to produce solar light-assisted photocatalytically active black ZrO2-x.

16.
J Phys Chem Lett ; 7(14): 2671-5, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27345207

RESUMO

Using first-principles density functional theory calculations and ab initio molecular dynamics (AIMD) simulations, we demonstrate the crystal structure of the Li7P2S8I (LPSI) and Li ionic conductivity at room temperature with its atomic-level mechanism. By successively applying three rigorous conceptual approaches, we identify that the LPSI has a similar symmetry class as Li10GeP2S12 (LGPS) material and estimate the Li ionic conductivity to be 0.3 mS cm(-1) with an activation energy of 0.20 eV, similar to the experimental value of 0.63 mS cm(-1). Iodine ions provide an additional path for Li ion diffusion, but a strong Li-I attractive interaction degrades the Li ionic transport. Calculated density of states (DOS) for LPSI indicate that electrochemical instability can be substantially improved by incorporating iodine at the Li metallic anode via forming a LiI compound. Our methods propose the computational design concept for a sulfide-based solid electrolyte with heteroatom doping for high-voltage Li ion batteries.

17.
Sci Rep ; 5: 17364, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26616045

RESUMO

The development of Cu-based alloys with high-mechanical properties (strength, ductility) and electrical conductivity plays a key role over a wide range of industrial applications. Successful design of the materials, however, has been rare due to the improvement of mutually exclusive properties as conventionally speculated. In this paper, we demonstrate that these contradictory material properties can be improved simultaneously if the interfacial energies of heterogeneous interfaces are carefully controlled. We uniformly disperse γ-Al2O3 nanoparticles over Cu matrix, and then we controlled atomic level morphology of the interface γ-Al2O3//Cu by adding Ti solutes. It is shown that the Ti dramatically drives the interfacial phase transformation from very irregular to homogeneous spherical morphologies resulting in substantial enhancement of the mechanical property of Cu matrix. Furthermore, the Ti removes impurities (O and Al) in the Cu matrix by forming oxides leading to recovery of the electrical conductivity of pure Cu. We validate experimental results using TEM and EDX combined with first-principles density functional theory (DFT) calculations, which all consistently poise that our materials are suitable for industrial applications.

18.
Sci Rep ; 5: 15050, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26456769

RESUMO

We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors.

19.
ACS Appl Mater Interfaces ; 7(21): 11599-603, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25980957

RESUMO

Using first-principles calculations, we study how to enhance thermal stability of high Ni compositional cathodes in Li-ion battery application. Using the archetype material LiNiO2 (LNO), we identify that ultrathin coating of Al2O3 (0001) on LNO(012) surface, which is the Li de-/intercalation channel, substantially improves the instability problem. Density functional theory calculations indicate that the Al2O3 deposits show phase transition from the corundum-type crystalline (c-Al2O3) to amorphous (a-Al2O3) structures as the number of coating layers reaches three. Ab initio molecular dynamic simulations on the LNO(012) surface coated by a-Al2O3 (about 0.88 nm) with three atomic layers oxygen gas evolution is strongly suppressed at T=400 K. We find that the underlying mechanism is the strong contacting force at the interface between LNO(012) and Al2O3 deposits, which, in turn, originated from highly ionic chemical bonding of Al and O at the interface. Furthermore, we identify that thermodynamic stability of the a-Al2O3 is even more enhanced with Li in the layer, implying that the protection for the LNO(012) surface by the coating layer is meaningful over the charging process. Our approach contributes to the design of innovative cathode materials with not only high-energy capacity but also long-term thermal and electrochemical stability applicable for a variety of electrochemical energy devices including Li-ion batteries.

20.
J Nanosci Nanotechnol ; 13(12): 8315-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24266229

RESUMO

WO3 nanorod based thin films were deposited via pulsed laser deposition onto quartz conductometric transducers with pre-patterned gold interdigitated transducers (IDT) employing the shortest wavelength (193 nm) ArF excimer laser. Micro-characterization techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to study surface morphology and crystal structure. It was observed that the fabricated films showed nanocolumnar features perpendicular to the surface. The measured sizes of the nanorods were found to be approximately -50 nm in diameter. The high resolution TEM (HRTEM) image of the nanorods based WO3 showed the WO3 lattice spacing of 3.79 angstroms corresponding to the (020) plane of monoclinic WO3. Gas sensing characterizations of the developed sensors were tested towards hydrogen and ethanol at temperatures between room and 400 degrees C. The sensor exhibited high response towards H2 and ethanol at operating temperatures of 170 and 400 degrees C, respectively. The excellent sensing characteristics of WO3 films towards ethanol and H2 at low concentrations offer great potential for low cost and stable gas sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...