Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 164: 1-14, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972808

RESUMO

Bone damage may be triggered by a variety of factors, and the damaged area often requires a bone graft. Bone tissue engineering can serve as an alternative strategy for repairing large bone defects. Mesenchymal stem cells (MSCs), the progenitor cells of connective tissue, have become an important tool for tissue engineering due to their ability to differentiate into a variety of cell types. The precise regulation of the growth and differentiation of the stem cells used for bone regeneration significantly affects the efficiency of this type of tissue engineering. During the process of osteogenic induction, the dynamics and function of localized mitochondria are altered. These changes may also alter the microenvironment of the therapeutic stem cells and result in mitochondria transfer. Mitochondrial regulation not only affects the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell. To date, bone tissue engineering research has mainly focused on the influence of biomaterials on phenotype and nuclear genotype, with few studies investigating the role of mitochondria. In this review, we provide a comprehensive summary of researches into the role of mitochondria in MSCs differentiation and critical analysis regarding smart biomaterials that are able to "programme" mitochondria modulation was proposed. STATEMENT OF SIGNIFICANCE: This review proposed the precise regulation of the growth and differentiation of the stem cells used to seed bone regeneration. • This review addressed the dynamics and function of localized mitochondria during the process of osteogenic induction and the effect of mitochondria on the microenvironment of stem cells. • This review summarized biomaterials which affect the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell through the regulation of mitochondria.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Materiais Biocompatíveis/farmacologia , Diferenciação Celular , Mitocôndrias
2.
Int Immunopharmacol ; 96: 107770, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34020391

RESUMO

Regulatory B cells (Bregs) are a subset of B cells that can downregulate the immune and inflammatory responses. The development of B cells in humans and mice is differs. The Positioning and targeted regulation of Bregs has a positive effect on autoimmune diseases. Autoimmune thyroid disease (AITD) is a common autoimmune disease. This review introduces the history and origins of Bregs. It summarizes the different phenotypes and functionalities of Breg cells related to AITD and analyzes the reasons for the differences in Breg expression frequencies in Graves disease (GD) and Hashimoto's Thyroiditis (HT). A number of functional defects of regulatory B cells may be the newly discovered cause of AITD. This paper sheds new light on the role and prospects of Bregs in the progression and treatment of AITD.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos B Reguladores/imunologia , Doença de Graves/imunologia , Doença de Hashimoto/imunologia , Animais , Doença de Graves/terapia , Doença de Hashimoto/terapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...