Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
J Phys Condens Matter ; 36(37)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888323

RESUMO

Interfacing the quantum anomalous Hall insulator with a conventional superconductor is known to be a promising manner for realizing a topological superconductor, which has been continuously pursued for years. Such a proximity route depends to a great extent on the control of the delicate interfacial coupling of the two constituents. However, a recent experiment reported the failure to reproduce such a topological superconductor, which is ascribed to the negligence of the electrical short by the superconductor in the theoretical proposal. Here, we reproduce this topological superconductor with attention to the interface control. The resulted conductance matrix under a wide magnetic field range agrees with the fingerprint of this topological superconductor. This allows us to develop a phase diagram that unveils three regions parameterized by various coupling limits, which not only supports the feasibility to fabricate the topological superconductor by proximity but also fully explains the origin of the previous debate. The present work provides a comprehensible guide on fabricating the topological superconductor.

2.
Nat Commun ; 15(1): 3717, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697983

RESUMO

The chiral antiferromagnetic (AFM) materials, which have been widely investigated due to their rich physics, such as non-zero Berry phase and topology, provide a platform for the development of antiferromagnetic spintronics. Here, we find two distinctive anomalous Hall effect (AHE) contributions in the chiral AFM Mn3Pt, originating from a time-reversal symmetry breaking induced intrinsic mechanism and a skew scattering induced topological AHE due to an out-of-plane spin canting with respect to the Kagome plane. We propose a universal AHE scaling law to explain the AHE resistivity ( ρ A H ) in this chiral magnet, with both a scalar spin chirality (SSC)-induced skew scattering topological AHE term, a s k and non-collinear spin-texture induced intrinsic anomalous Hall term, b i n . We found that a s k and b i n can be effectively modulated by the interfacial electron scattering, exhibiting a linear relation with the inverse film thickness. Moreover, the scaling law can explain the anomalous Hall effect in various chiral magnets and has far-reaching implications for chiral-based spintronics devices.

4.
Nat Commun ; 15(1): 2881, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570519

RESUMO

Achieving spin-pinning at the interface of hetero-bilayer ferromagnet/antiferromagnet structures in conventional exchange bias systems can be challenging due to difficulties in interface control and the weakening of spin-pinning caused by poor interface quality. In this work, we propose an alternative approach to stabilize the exchange interaction at the interface of an uncompensated antiferromagnet by utilizing a gradient of interlayer exchange coupling. We demonstrate this exchange interaction through a designed field training protocol in the odd-layer topological antiferromagnet MnBi2Te4. Our results reveal a remarkable field-trained exchange bias of up to ~ 400 mT, which exhibits high repeatability and can be easily reset by a large training field. Notably, this field-trained exchange bias effect persists even with zero-field initialization, presenting a stark contrast to the traditional field-cooled exchange bias. The highly tunable exchange bias observed in this single antiferromagnet compound, without the need for an additional magnetic layer, provides valuable insight into the exchange interaction mechanism. These findings pave the way for the systematic design of topological antiferromagnetic spintronics.

5.
Zhonghua Yi Xue Za Zhi ; 104(16): 1422-1425, 2024 Apr 23.
Artigo em Chinês | MEDLINE | ID: mdl-38644294

RESUMO

Demographic data and clinical data were collected retrospectively from patients with pertussis at the Children's Hospital Affiliated to the Capital Institute of Pediatrics between March 2011 and February 2023. Among the 270 hospitalized patients, 151 cases were male and 119 were female. The youngest age of admission was 10 days and the eldest age of admission was 11 years. The 270 hospitalized patients were divided into two groups according to onset age: <3 months (n=143) and≥3 months (n=127). For those in the <3-month-old group, the incidence of severe pneumonia and severe pertussis were 21.0% and 38.5%, respectively, both were significantly higher than those in≥3-month-old group (7.9% and 11.0%, both P<0.05). For those in the <3-month-old group, paroxysmal spasmodic cough, post-tussive vomiting, paroxysmal cyanosis, apnea, and decreased heart rate after coughing were 86.7%, 25.2%, 38.5%, 7.0% and 16.8%, respectively, all were significantly higher than those in ≥3-month-old group (76.4%, 10.2%, 15.7%, 1.6% and 1.6%, all P<0.05). For those in the<3-month-old group, the incidence of hypoxemia, respiratory failure, were 36.4%, 16.8%, respectively, and both were significantly higher than those in≥3-month-old group (10.2%, 7.1%, P<0.05). It indicated that among the infants under 3 months, the incidence of vomiting after coughing, paroxysmal cyanosis, apnea, hypoxemia, respiratory failure, decreased heart rate after coughing and severe pneumonia were significantly higher than those above 3 months. Infants under 3 months were prone to severe pertussis.


Assuntos
Hospitalização , Coqueluche , Humanos , Coqueluche/diagnóstico , Lactente , Masculino , Feminino , Estudos Retrospectivos , Incidência , Recém-Nascido , Tosse , Pneumonia , Criança , Vômito
6.
Phys Rev Lett ; 132(14): 146601, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640375

RESUMO

The layer-dependent Chern number (C) in MnBi_{2}Te_{4} is characterized by the presence of a Weyl semimetal state in the ferromagnetic coupling. However, the influence of a key factor, namely, the exchange coupling, remains unexplored. This study focuses on characterizing the C=2 state in MnBi_{2}Te_{4}, which is classified as a higher C state resulting from the anomalous n=0 Landau levels (LLs). Our findings demonstrate that the exchange coupling parameter strongly influences the formation of this Chern state, leading to a competition between the C=1 and 2 states. Moreover, the emergence of odd-even LL sequences, resulting from the breaking of LL degeneracy, provides compelling evidence for the strong exchange coupling strength. These findings highlight the significance of the exchange coupling in understanding the behavior of Chern states and LLs in magnetic quantum systems.

7.
Zhonghua Wei Chang Wai Ke Za Zhi ; 27(3): 231-235, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38532584

RESUMO

Intestinal failure is a syndrome characterized by a diminished intestinal function that is inadequate to maintain normal digestion and absorption, leading to systemic metabolic disorder and requiring long-term nutritional supplementation to sustain health and growth. Short bowel syndrome (SBS) is one of the primary causes of intestinal failure. Given the significant differences among SBS patients, nutritional treatment strategies should emphasize individualization. This review focuses on SBS, combining its anatomical and pathological characteristics, to introduce nutritional support treatment plans and experiences for patients with intestinal failure.


Assuntos
Insuficiência Intestinal , Síndrome do Intestino Curto , Humanos , Apoio Nutricional , Intestinos
8.
Nano Lett ; 24(7): 2181-2187, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340079

RESUMO

Recently discovered as an intrinsic antiferromagnetic topological insulator, MnBi2Te4 has attracted tremendous research interest, as it provides an ideal platform to explore the interplay between topological and magnetic orders. MnBi2Te4 displays distinct exotic topological phases that are inextricably linked to the different magnetic structures of the material. In this study, we conducted electrical transport measurements and systematically investigated the anomalous Hall response of epitaxial MnBi2Te4 films when subjected to an external magnetic field sweep, revealing the different magnetic structures stemming from the interplay of applied fields and the material's intrinsic antiferromagnetic (AFM) ordering. Our results demonstrate that the nonsquare anomalous Hall loop is a consequence of the distinct reversal processes within individual septuple layers. These findings shed light on the intricate magnetic structures in MnBi2Te4 and related materials, offering insights into understanding their transport properties and facilitating the implementation of AFM topological electronics.

9.
Nano Lett ; 23(23): 10802-10810, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38029283

RESUMO

Quantum coherence of electrons can produce striking behaviors in mesoscopic conductors. Although magnetic order can also strongly affect transport, the combination of coherence and magnetic order has been largely unexplored. Here, we examine quantum coherence-driven universal conductance fluctuations in the antiferromagnetic, canted antiferromagnetic, and ferromagnetic phases of a thin film of the topological material MnBi2Te4. In each magnetic phase, we extract a charge carrier phase coherence length of about 100 nm. The conductance magnetofingerprint is repeatable when sweeping applied magnetic field within one magnetic phase. Surprisingly, in the antiferromagnetic and canted antiferromagnetic phases, but not in the ferromagnetic phase, the magnetofingerprint depends on the direction of the field sweep. To explain our observations, we suggest that conductance fluctuation measurements are sensitive to the motion and nucleation of magnetic domain walls in MnBi2Te4.

10.
Nanomaterials (Basel) ; 13(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836296

RESUMO

Magnetic topological insulators (MTIs) are a group of materials that feature topological band structures with concurrent magnetism, which can offer new opportunities for technological advancements in various applications, such as spintronics and quantum computing. The combination of topology and magnetism introduces a rich spectrum of topological phases in MTIs, which can be controllably manipulated by tuning material parameters such as doping profiles, interfacial proximity effect, or external conditions such as pressure and electric field. In this paper, we first review the mainstream MTI material platforms where the quantum anomalous Hall effect can be achieved, along with other exotic topological phases in MTIs. We then focus on highlighting recent developments in modulating topological properties in MTI with finite-size limit, pressure, electric field, and magnetic proximity effect. The manipulation of topological phases in MTIs provides an exciting avenue for advancing both fundamental research and practical applications. As this field continues to develop, further investigations into the interplay between topology and magnetism in MTIs will undoubtedly pave the way for innovative breakthroughs in the fundamental understanding of topological physics as well as practical applications.

11.
Nat Commun ; 14(1): 6691, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872165

RESUMO

Ferromagnetism and superconductivity are two key ingredients for topological superconductors, which can serve as building blocks of fault-tolerant quantum computers. Adversely, ferromagnetism and superconductivity are typically also two hostile orderings competing to align spins in different configurations, and thus making the material design and experimental implementation extremely challenging. A single material platform with concurrent ferromagnetism and superconductivity is actively pursued. In this paper, we fabricate van der Waals Josephson junctions made with iron-based superconductor Fe(Te,Se), and report the global device-level transport signatures of interfacial ferromagnetism emerging with superconducting states for the first time. Magnetic hysteresis in the junction resistance is observed only below the superconducting critical temperature, suggesting an inherent correlation between ferromagnetic and superconducting order parameters. The 0-π phase mixing in the Fraunhofer patterns pinpoints the ferromagnetism on the junction interface. More importantly, a stochastic field-free superconducting diode effect was observed in Josephson junction devices, with a significant diode efficiency up to 10%, which unambiguously confirms the spontaneous time-reversal symmetry breaking. Our work demonstrates a new way to search for topological superconductivity in iron-based superconductors for future high Tc fault-tolerant qubit implementations from a device perspective.

12.
Nat Commun ; 14(1): 5558, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689721

RESUMO

In multilayered magnetic topological insulator structures, magnetization reversal processes can drive topological phase transitions between quantum anomalous Hall, axion insulator, and normal insulator states. Here we report an examination of the critical behavior of two such transitions: the quantum anomalous Hall to normal insulator (QAH-NI), and quantum anomalous Hall to axion insulator (QAH-AXI) transitions. By introducing a new analysis protocol wherein temperature dependent variations in the magnetic coercivity are accounted for, the critical behavior of the QAH-NI and QAH-AXI transitions are evaluated over a wide range of temperature and magnetic field. Despite the uniqueness of these different transitions, quantized longitudinal resistance and Hall conductance are observed at criticality in both cases. Furthermore, critical exponents were extracted for QAH-AXI transitions occurring at magnetization reversals of two different magnetic layers. The observation of consistent critical exponents and resistances in each case, independent of the magnetic layer details, demonstrates critical behaviors in quantum anomalous Hall transitions to be of electronic rather than magnetic origin. Our finding offers a new avenue for studies of phase transition and criticality in QAH insulators.

13.
Nat Commun ; 14(1): 4805, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558682

RESUMO

The intrinsic magnetic topological insulator, Mn(Bi1-xSbx)2Te4, has been identified as a Weyl semimetal with a single pair of Weyl nodes in its spin-aligned strong-field configuration. A direct consequence of the Weyl state is the layer dependent Chern number, [Formula: see text]. Previous reports in MnBi2Te4 thin films have shown higher [Formula: see text] states either by increasing the film thickness or controlling the chemical potential. A clear picture of the higher Chern states is still lacking as data interpretation is further complicated by the emergence of surface-band Landau levels under magnetic fields. Here, we report a tunable layer-dependent [Formula: see text] = 1 state with Sb substitution by performing a detailed analysis of the quantization states in Mn(Bi1-xSbx)2Te4 dual-gated devices-consistent with calculations of the bulk Weyl point separation in the doped thin films. The observed Hall quantization plateaus for our thicker Mn(Bi1-xSbx)2Te4 films under strong magnetic fields can be interpreted by a theory of surface and bulk spin-polarised Landau level spectra in thin film magnetic topological insulators.

14.
Zhonghua Wei Chang Wai Ke Za Zhi ; 26(6): 603-606, 2023 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-37583015

RESUMO

Transanal total mesorectal resection (taTME) has come a long way since it was first used in the clinic in 2010.The learning curve of this procedure is long due to different surgical approaches, different perspectives and different anatomical positions. Many surgeons experience complications during this procedure. Although the advantages and problems of this procedure have been reported in much literature, the anatomy and operation methods of taTME introduced in literatures and training centers are too complicated, which makes many surgeons encounter difficulties in carrying out taTME surgery. According to the author's experience in learning and carrying out this operation, spatial expansion process of ultralow rectal cancer was divided into three stages. At each stage, according to different pulling forces, three different schemes of triangular stability mechanics model were adopted for separation. From point to line, from line to plane, the model can protect the safety of peripheral blood vessels and nerves while ensuring total mesorectal excision . This model simplifies the complex surgical process and is convenient for beginners to master taTME surgical separation skills.


Assuntos
Laparoscopia , Protectomia , Neoplasias Retais , Cirurgia Endoscópica Transanal , Humanos , Reto/cirurgia , Laparoscopia/métodos , Cirurgia Endoscópica Transanal/métodos , Neoplasias Retais/cirurgia , Protectomia/métodos , Complicações Pós-Operatórias , Resultado do Tratamento
15.
Nat Commun ; 14(1): 5173, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620355

RESUMO

Two-dimensional (2D) ferromagnetic materials with unique magnetic properties have great potential for next-generation spintronic devices with high flexibility, easy controllability, and high heretointegrability. However, realizing magnetic switching with low power consumption at room temperature is challenging. Here, we demonstrate the room-temperature spin-orbit torque (SOT) driven magnetization switching in an all-van der Waals (vdW) heterostructure using an optimized epitaxial growth approach. The topological insulator Bi2Te3 not only raises the Curie temperature of Fe3GeTe2 (FGT) through interfacial exchange coupling but also works as a spin current source allowing the FGT to switch at a low current density of ~2.2×106 A/cm2. The SOT efficiency is ~2.69, measured at room temperature. The temperature and thickness-dependent SOT efficiency prove that the larger SOT in our system mainly originates from the nontrivial topological origin of the heterostructure. Our experiments enable an all-vdW SOT structure and provides a solid foundation for the implementation of room-temperature all-vdW spintronic devices in the future.

16.
Zhonghua Wai Ke Za Zhi ; 61(9): 753-759, 2023 Sep 01.
Artigo em Chinês | MEDLINE | ID: mdl-37491167

RESUMO

Objective: To examine a predictive model that incorporating high risk pathological factors for the prognosis of stage Ⅰ to Ⅲ colon cancer. Methods: This study retrospectively collected clinicopathological information and survival outcomes of stage Ⅰ~Ⅲ colon cancer patients who underwent curative surgery in 7 tertiary hospitals in China from January 1, 2016 to December 31, 2017. A total of 1 650 patients were enrolled, aged (M(IQR)) 62 (18) years (range: 14 to 100). There were 963 males and 687 females. The median follow-up period was 51 months. The Cox proportional hazardous regression model was utilized to select high-risk pathological factors, establish the nomogram and scoring system. The Bootstrap resampling method was utilized for internal validation of the model, the concordance index (C-index) was used to assess discrimination and calibration curves were presented to assess model calibration. The Kaplan-Meier method was used to plot survival curves after risk grouping, and Cox regression was used to compare disease-free survival between subgroups. Results: Age (HR=1.020, 95%CI: 1.008 to 1.033, P=0.001), T stage (T3:HR=1.995,95%CI:1.062 to 3.750,P=0.032;T4:HR=4.196, 95%CI: 2.188 to 8.045, P<0.01), N stage (N1: HR=1.834, 95%CI: 1.307 to 2.574, P<0.01; N2: HR=3.970, 95%CI: 2.724 to 5.787, P<0.01) and number of lymph nodes examined (≥36: HR=0.438, 95%CI: 0.242 to 0.790, P=0.006) were independently associated with disease-free survival. The C-index of the scoring model (model 1) based on age, T stage, N stage, and dichotomous variables of the lymph nodes examined (<12 and ≥12) was 0.723, and the C-index of the scoring model (model 2) based on age, T stage, N stage, and multi-categorical variables of the lymph nodes examined (<12, 12 to <24, 24 to <36, and ≥36) was 0.726. A scoring system was established based on age, T stage, N stage, and multi-categorical variables of lymph nodes examined, the 3-year DFS of the low-risk (≤1), middle-risk (2 to 4) and high-risk (≥5) group were 96.3% (n=711), 89.0% (n=626) and 71.4% (n=313), respectively. Statistically significant difference was observed among groups (P<0.01). Conclusions: The number of lymph nodes examined was an independent prognostic factor for disease-free survival after curative surgery in patients with stage Ⅰ to Ⅲ colon cancer. Incorporating the number of lymph nodes examined as a multi-categorical variable into the T and N staging system could improve prognostic predictive validity.


Assuntos
Neoplasias do Colo , Nomogramas , Masculino , Feminino , Humanos , Prognóstico , Estadiamento de Neoplasias , Estudos Retrospectivos , Linfonodos/patologia , Fatores de Risco , Neoplasias do Colo/cirurgia
17.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125853

RESUMO

We report the implementation of a dilution refrigerator-based scanning microwave impedance microscope with a base temperature of ∼100 mK. The vibration noise of our apparatus with tuning-fork feedback control is as low as 1 nm. Using this setup, we have demonstrated the imaging of quantum anomalous Hall states in magnetically (Cr and V) doped (Bi, Sb)2Te3 thin films grown on mica substrates. Both the conductive edge modes and topological phase transitions near the coercive fields of Cr- and V-doped layers are visualized in the field-dependent results. Our study establishes the experimental platform for investigating nanoscale quantum phenomena at ultralow temperatures.

18.
Adv Mater ; 35(31): e2300391, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37207689

RESUMO

The quantum anomalous Hall (QAH) effect is characterized by a dissipationless chiral edge state with a quantized Hall resistance at zero magnetic field. Manipulating the QAH state is of great importance in both the understanding of topological quantum physics and the implementation of dissipationless electronics. Here, the QAH effect is realized in the magnetic topological insulator Cr-doped (Bi,Sb)2 Te3 (CBST) grown on an uncompensated antiferromagnetic insulator Al-doped Cr2 O3 . Through polarized neutron reflectometry (PNR), a strong exchange coupling is found between CBST and Al-Cr2 O3 surface spins fixing interfacial magnetic moments perpendicular to the film plane. The interfacial coupling results in an exchange-biased QAH effect. This study further demonstrates that the magnitude and sign of the exchange bias can be effectively controlled using a field training process to set the magnetization of the Al-Cr2 O3 layer. It demonstrates the use of the exchange bias effect to effectively manipulate the QAH state, opening new possibilities in QAH-based spintronics.

19.
Adv Mater ; 35(31): e2302350, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37141542

RESUMO

Giant spin-orbit torque (SOT) from topological insulators (TIs) has great potential for low-power SOT-driven magnetic random-access memory (SOT-MRAM). In this work, a functional 3-terminal SOT-MRAM device is demonstrated by integrating the TI [(BiSb)2 Te3 ] with perpendicular magnetic tunnel junctions (pMTJs), where the tunneling magnetoresistance is employed for the effective reading method. An ultralow switching current density of 1.5 × 105  A cm-2 is achieved in the TI-pMTJ device at room temperature, which is 1-2 orders of magnitude lower than that in conventional heavy-metals-based systems, due to the high SOT efficiency θSH = 1.16 of (BiSb)2 Te3 . Furthermore, all-electrical field-free writing is realized by the synergistic effect of a small spin-transfer torque current during the SOT. The thermal stability factor (Δ = 66) shows the high retention time (>10 years) of the TI-pMTJ device. This work sheds light to the future low-power, high-density, and high-endurance/retention magnetic memory technology based on quantum materials.

20.
Fluids Barriers CNS ; 20(1): 27, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041551

RESUMO

BACKGROUND: Recent data indicates that cerebrospinal fluid (CSF) dynamics are disturbed after stroke. Our lab has previously shown that intracranial pressure rises dramatically 24 h after experimental stroke and that this reduces blood flow to ischaemic tissue. CSF outflow resistance is increased at this time point. We hypothesised that reduced transit of CSF through brain parenchyma and reduced outflow of CSF via the cribriform plate at 24 h after stroke may contribute to the previously identified post-stroke intracranial pressure elevation. METHODS: Using a photothrombotic permanent occlusion model of stroke in C57BL/6 adult male mice, we examined the movement of an intracisternally infused 0.5% Texas Red dextran throughout the brain and measured tracer efflux into the nasal mucosa via the cribriform plate at 24 h or two weeks after stroke. Brain tissue and nasal mucosa were collected ex vivo and imaged using fluorescent microscopy to determine the change in CSF tracer intensity in these tissues. RESULTS: At 24 h after stroke, we found that CSF tracer load was significantly reduced in brain tissue from stroke animals in both the ipsilateral and contralateral hemispheres when compared to sham. CSF tracer load was also reduced in the lateral region of the ipsilateral hemisphere when compared to the contralateral hemisphere in stroke brains. In addition, we identified an 81% reduction in CSF tracer load in the nasal mucosa in stroke animals compared to sham. These alterations to the movement of CSF-borne tracer were not present at two weeks after stroke. CONCLUSIONS: Our data indicates that influx of CSF into the brain tissue and efflux via the cribriform plate are reduced 24 h after stroke. This may contribute to reported increases in intracranial pressure at 24 h after stroke and thus worsen stroke outcomes.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Encéfalo/irrigação sanguínea , Pressão Intracraniana/fisiologia , Mucosa Nasal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...