Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 23(12): 1244-1254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33682536

RESUMO

How arbuscular mycorrhizal (AM) fungi affect litter nutrient release and soil properties in the nutrient-deficient karst soil, is unclear. An experiment was conducted in this study using a dual compartment device composed of a planting compartment (for the Cinnamomum camphora seedlings with or without Funneliformis mosseae fungus) and a litter compartment (with or without the litter of Arthraxon hispidus). The center baffle between the compartments was covered with a double layer of 20-µm or 0.45-µm nylon mesh, which controlled the entrance of AM mycelium into the litter compartment. The results are as follows: AM mycelium significantly increased the mass loss and carbon and nitrogen releases and decreased the nitrogen concentration in the litter. AM mycelium could significantly increase soil organic carbon, total nitrogen and availability of phosphorus during litter decomposition in the litter compartment. Redundancy analysis showed that the effect of AM mycelium on the soil organic carbon, total nitrogen in the litter compartment was closely associated with the increase in carbon and nitrogen release from litter. It was concluded that AM mycelium can enhance litter decomposition and nutrient releases, contributing to greater nutrient input to the soil and then subsequently higher soil organic carbon and nutrient content in the nutrient-poor karst soils. STATEMENT OF NOVELTYThis study firstly estimated the impacts of arbuscular mycorrhizal fungi on litter nutrient releases and soil properties through root external mycelium.


Assuntos
Micorrizas , Biodegradação Ambiental , Carbono , Fungos , Nitrogênio , Nutrientes , Raízes de Plantas , Solo , Microbiologia do Solo
2.
PLoS One ; 15(6): e0234410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32516341

RESUMO

The Eupatorium adenophorum have widespread invaded the karst ecosystem of southwest China and threatened the regional native community stability. Arbuscular mycorrhizae (AM) plays an important role in promoting growth for host plants via root external mycelia. However, whether AM regulates plant root traits underlying competition between invasive and native species via mycorrhizal networks in karst habitats, remains unclear. An experiment was conducted in a microcosm composed of two planting compartments flanking a competition compartment. The invasive E. adenophorum and native Artemisia annua were each placed in one of the two planting compartments with or without Glomus etunicatum fungus. The nutrient access treatments included the competitive utilization (Cu), single utilization (Su) and non-utilization (Nu) by using different nylon meshes allowed or prevented mycelium passing to acquire nutrients from the competition compartment. Root traits and nutrients of the two species were analyzed. The results showed that AM fungi had differential effects on root traits and nutrients of E. adenophorum and A. annua seedlings, which increased dry weight, length, surface area, volume, tips and branching points in roots, specific root length and volume, root nitrogen (N) and phosphorus (P) contents under Cu, Su and Nu treatments. AM fungus was also associated with decreases in the average diameter for both species. Under the Cu treatment, E. adenophorum had significantly greater length, surface area, volume, tips and branching points of roots, specific root traits, and root N and P than A. annua. AM fungi changed root phenotypes and nutrient uptake for both invasive and native plant species via interconnected mycorrhizal networks. Overall, our results suggest that through mycorrhizal networks, the invasive plant experiences greater benefits than the native plant in the nutrient competition, which fosters root morphological developments in karst soil.


Assuntos
Ageratina/metabolismo , Micorrizas/metabolismo , Microbiologia do Solo , Artemisia annua/metabolismo , China , Ecossistema , Micélio , Micorrizas/fisiologia , Nitrogênio , Nutrientes , Fósforo , Raízes de Plantas/crescimento & desenvolvimento , Plantas Daninhas/metabolismo , Solo , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...