Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2606: 203-218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36592318

RESUMO

The CRISPR/Cas9 system is an extremely powerful tool for targeted mutagenesis in plants. However, plant genome editing relies on the labor-intensive plant regeneration method for generating gene-edited plants. To overcome this bottleneck, several virus-induced genome editing (VIGE) techniques have been developed. The VIGE system aims to induce targeted mutations in germ cells without plant regeneration. However, due to the delivery issues of a large Cas9 protein, scientists focus on developing a virus-mediated delivery system for guide RNA into Cas9-overproducing plants. Here, we describe how to induce heritable targeted mutations in a non-model plant, Nicotiana attenuata, using VIGE system. This method will be applied for manipulating the target genes in any plants that scientists are interested in.


Assuntos
Edição de Genes , Nicotiana , Edição de Genes/métodos , Nicotiana/genética , Sistemas CRISPR-Cas/genética , Plantas/genética , Genoma de Planta , Plantas Geneticamente Modificadas/genética
2.
New Phytol ; 234(2): 527-544, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075650

RESUMO

High-throughput single-cell RNA sequencing (scRNA-Seq) identifies distinct cell populations based on cell-to-cell heterogeneity in gene expression. By examining the distribution of the density of gene expression profiles, we can observe the metabolic features of each cell population. Here, we employ the scRNA-Seq technique to reveal the entire biosynthetic pathway of a flower volatile. The corolla of the wild tobacco Nicotiana attenuata emits a bouquet of scents that are composed mainly of benzylacetone (BA). Protoplasts from the N. attenuata corolla limbs and throat cups were isolated at three different time points, and the transcript levels of > 16 000 genes were analyzed in 3756 single cells. We performed unsupervised clustering analysis to determine which cell clusters were involved in BA biosynthesis. The biosynthetic pathway of BA was uncovered by analyzing gene co-expression in scRNA-Seq datasets and by silencing candidate genes in the corolla. In conclusion, the high-resolution spatiotemporal atlas of gene expression provided by scRNA-Seq reveals the molecular features underlying cell-type-specific metabolism in a plant.


Assuntos
Nicotiana , Odorantes , Vias Biossintéticas/genética , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica , RNA/metabolismo , Análise de Sequência de RNA , Nicotiana/genética , Nicotiana/metabolismo
3.
New Phytol ; 232(1): 332-344, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34171146

RESUMO

Plants have developed tissue-specific defense strategies in response to various herbivores with different feeding habits. Although defense responses to leaf-chewing insects have been well studied, little is known about stem-specific responses, particularly in the pith, to stem-boring herbivores. To understand the stem-specific defense, we first conducted a comparative transcriptomic analysis of the wild tobacco Nicotiana attenuata before and after attack by the leaf-chewing herbivore Manduca sexta and the stem borer Trichobaris mucorea. When the stem-boring herbivore attacked, lignin-associated genes were upregulated specifically in the inner parenchymal cells of the stem, the pith; lignin also accumulated highly in the attacked pith. Silencing the lignin biosynthetic gene cinnamyl alcohol dehydrogenase enhanced the performance of the stem-boring herbivore but had no effect on the growth of the leaf-chewing herbivore. Two-dimensional nuclear magnetic resonance results revealed that lignified pith contains feruloyltyramine as an unusual lignin component in the cell wall, as a response against stem-boring herbivore attack. Pith-specific lignification induced by the stem-boring herbivore was modulated by both jasmonate and ethylene signaling. These results suggest that lignin provides a stem-specific inducible barrier, protecting plants against stem-boring insects.


Assuntos
Manduca , Gorgulhos , Animais , Regulação da Expressão Gênica de Plantas , Herbivoria , Nicotiana/genética
4.
Sci Rep ; 6: 30265, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27484164

RESUMO

Hyperglycemia, hyperlipidemia, and insulin resistance are hallmarks of obesity-induced type 2 diabetes, which is often caused by a high-fat diet (HFD). However, the molecular mechanisms underlying HFD-induced insulin resistance have not been elucidated in detail. In this study, we established a Drosophila model to investigate the molecular mechanisms of HFD-induced diabetes. HFD model flies recapitulate mammalian diabetic phenotypes including elevated triglyceride and circulating glucose levels, as well as insulin resistance. Expression of glass bottom boat (gbb), a Drosophila homolog of mammalian transforming growth factor-ß (TGF-ß), is elevated under HFD conditions. Furthermore, overexpression of gbb in the fat body produced obese and insulin-resistant phenotypes similar to those of HFD-fed flies, whereas inhibition of Gbb signaling significantly ameliorated HFD-induced metabolic phenotypes. We also discovered that tribbles, a negative regulator of AKT, is a target gene of Gbb signaling in the fat body. Overexpression of tribbles in flies in the fat body phenocopied the metabolic defects associated with HFD conditions or Gbb overexpression, whereas tribbles knockdown rescued these metabolic phenotypes. These results indicate that HFD-induced TGF-ß/Gbb signaling provokes insulin resistance by increasing tribbles expression.


Assuntos
Proteínas de Ciclo Celular/genética , Diabetes Mellitus Experimental/genética , Dieta Hiperlipídica/efeitos adversos , Proteínas de Drosophila/genética , Resistência à Insulina , Obesidade/genética , Proteínas Serina-Treonina Quinases/genética , Fator de Crescimento Transformador beta/genética , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Corpo Adiposo/patologia , Regulação da Expressão Gênica , Humanos , Masculino , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...