Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 27(10): 4914-4925, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37486830

RESUMO

Ultrasound based estimation of fetal biometry is extensively used to diagnose prenatal abnormalities and to monitor fetal growth, for which accurate segmentation of the fetal anatomy is a crucial prerequisite. Although deep neural network-based models have achieved encouraging results on this task, inevitable distribution shifts in ultrasound images can still result in severe performance drop in real world deployment scenarios. In this article, we propose a complete ultrasound fetal examination system to deal with this troublesome problem by repairing and screening the anatomically implausible results. Our system consists of three main components: A routine segmentation network, a fetal anatomical key points guided repair network, and a shape-coding based selective screener. Guided by the anatomical key points, our repair network has stronger cross-domain repair capabilities, which can substantially improve the outputs of the segmentation network. By quantifying the distance between an arbitrary segmentation mask to its corresponding anatomical shape class, the proposed shape-coding based selective screener can then effectively reject the entire implausible results that cannot be fully repaired. Extensive experiments demonstrate that our proposed framework has strong anatomical guarantee and outperforms other methods in three different cross-domain scenarios.


Assuntos
Feto , Processamento de Imagem Assistida por Computador , Ultrassonografia Pré-Natal , Feminino , Humanos , Gravidez , Biometria , Feto/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Ultrassonografia
2.
Med Image Anal ; 87: 102805, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37104995

RESUMO

Unsupervised anomaly detection (UAD) is to detect anomalies through learning the distribution of normal data without labels and therefore has a wide application in medical images by alleviating the burden of collecting annotated medical data. Current UAD methods mostly learn the normal data by the reconstruction of the original input, but often lack the consideration of any prior information that has semantic meanings. In this paper, we first propose a universal unsupervised anomaly detection framework SSL-AnoVAE, which utilizes a self-supervised learning (SSL) module for providing more fine-grained semantics depending on the to-be detected anomalies in the retinal images. We also explore the relationship between the data transformation adopted in the SSL module and the quality of anomaly detection for retinal images. Moreover, to take full advantage of the proposed SSL-AnoVAE and apply towards clinical usages for computer-aided diagnosis of retinal-related diseases, we further propose to stage and segment the anomalies in retinal images detected by SSL-AnoVAE in an unsupervised manner. Experimental results demonstrate the effectiveness of our proposed method for unsupervised anomaly detection, staging and segmentation on both retinal optical coherence tomography images and color fundus photograph images.


Assuntos
Diagnóstico por Computador , Doenças Retinianas , Humanos , Fundo de Olho , Doenças Retinianas/diagnóstico por imagem , Semântica , Tomografia de Coerência Óptica , Processamento de Imagem Assistida por Computador
3.
Quant Imaging Med Surg ; 12(10): 4758-4770, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36185061

RESUMO

Background: This study set out to develop a computed tomography (CT)-based wavelet transforming radiomics approach for grading pulmonary lesions caused by COVID-19 and to validate it using real-world data. Methods: This retrospective study analyzed 111 patients with 187 pulmonary lesions from 16 hospitals; all patients had confirmed COVID-19 and underwent non-contrast chest CT. Data were divided into a training cohort (72 patients with 127 lesions from nine hospitals) and an independent test cohort (39 patients with 60 lesions from seven hospitals) according to the hospital in which the CT was performed. In all, 73 texture features were extracted from manually delineated lesion volumes, and 23 three-dimensional (3D) wavelets with eight decomposition modes were implemented to compare and validate the value of wavelet transformation for grade assessment. Finally, the optimal machine learning pipeline, valuable radiomic features, and final radiomic models were determined. The area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, and decision curve were used to determine the diagnostic performance and clinical utility of the models. Results: Of the 187 lesions, 108 (57.75%) were diagnosed as mild lesions and 79 (42.25%) as moderate/severe lesions. All selected radiomic features showed significant correlations with the grade of COVID-19 pulmonary lesions (P<0.05). Biorthogonal 1.1 (bior1.1) LLL was determined as the optimal wavelet transform mode. The wavelet transforming radiomic model had an AUC of 0.910 in the test cohort, outperforming the original radiomic model (AUC =0.880; P<0.05). Decision analysis showed the radiomic model could add a net benefit at any given threshold of probability. Conclusions: Wavelet transformation can enhance CT texture features. Wavelet transforming radiomics based on CT images can be used to effectively assess the grade of pulmonary lesions caused by COVID-19, which may facilitate individualized management of patients with this disease.

4.
Med Image Anal ; 79: 102443, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537340

RESUMO

Thyroid nodule segmentation and classification in ultrasound images are two essential but challenging tasks for computer-aided diagnosis of thyroid nodules. Since these two tasks are inherently related to each other and sharing some common features, solving them jointly with multi-task leaning is a promising direction. However, both previous studies and our experimental results confirm the problem of inconsistent predictions among these related tasks. In this paper, we summarize two types of task inconsistency according to the relationship among different tasks: intra-task inconsistency between homogeneous tasks (e.g., both tasks are pixel-wise segmentation tasks); and inter-task inconsistency between heterogeneous tasks (e.g., pixel-wise segmentation task and categorical classification task). To address the task inconsistency problems, we propose intra- and inter-task consistent learning on top of the designed multi-stage and multi-task learning network to enforce the network learn consistent predictions for all the tasks during network training. Our experimental results based on a large clinical thyroid ultrasound image dataset indicate that the proposed intra- and inter-task consistent learning can effectively eliminate both types of task inconsistency and thus improve the performance of all tasks for thyroid nodule segmentation and classification.


Assuntos
Nódulo da Glândula Tireoide , Diagnóstico por Computador , Humanos , Processamento de Imagem Assistida por Computador , Nódulo da Glândula Tireoide/diagnóstico por imagem , Ultrassonografia/métodos
5.
J Clin Endocrinol Metab ; 107(4): 953-963, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34907442

RESUMO

PURPOSE: This study investigates the efficiency of deep learning models in the automated diagnosis of Hashimoto's thyroiditis (HT) using real-world ultrasound data from ultrasound examinations by computer-assisted diagnosis (CAD) with artificial intelligence. METHODS: We retrospectively collected ultrasound images from patients with and without HT from 2 hospitals in China between September 2008 and February 2018. Images were divided into a training set (80%) and a validation set (20%). We ensembled 9 convolutional neural networks (CNNs) as the final model (CAD-HT) for HT classification. The model's diagnostic performance was validated and compared to 2 hospital validation sets. We also compared the accuracy of CAD-HT against seniors/junior radiologists. Subgroup analysis of CAD-HT performance for different thyroid hormone levels (hyperthyroidism, hypothyroidism, and euthyroidism) was also evaluated. RESULTS: 39 280 ultrasound images from 21 118 patients were included in this study. The accuracy, sensitivity, and specificity of the HT-CAD model were 0.892, 0.890, and 0.895, respectively. HT-CAD performance between 2 hospitals was not significantly different. The HT-CAD model achieved a higher performance (P < 0.001) when compared to senior radiologists, with a nearly 9% accuracy improvement. HT-CAD had almost similar accuracy (range 0.87-0.894) for the 3 subgroups based on thyroid hormone level. CONCLUSION: The HT-CAD strategy based on CNN significantly improved the radiologists' diagnostic accuracy of HT. Our model demonstrates good performance and robustness in different hospitals and for different thyroid hormone levels.


Assuntos
Inteligência Artificial , Doença de Hashimoto , Diagnóstico por Computador , Doença de Hashimoto/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...