Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 2766-2773, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297797

RESUMO

In this study, a dual-interrogation (DI) method was used to suppress the light shift in the Rb 778 nm 5S1/2→5D5/2 two-photon transition optical frequency standard (2hν-OFS). The approach used an auxiliary system to calibrate the light shift of the primary system in real time to mitigate the absolute light shift and suppress the sensitivity of the system to the light power. Results show that after using the DI method, the absolute light shift and light-power sensitivity of the system were reduced by a factor of 10. The proposed method will improve the accuracy of the Rb 778 nm 2hν-OFS and increase the mid- and long-term stability. The method can also be applied to other vapor-cell atomic frequency standards that experience light shifts.

2.
Opt Express ; 29(2): 2466-2477, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726441

RESUMO

Coherent population trapping (CPT) resonance signals have promise in a wide range of applications involving precision sensing. Generally, the CPT phenomenon occurs in a three-level Λ system with a bichromatic phase-coherent light fields. We theoretically and experimentally studied an Rb vapor-cell-based atomic system involving bichromatic CPT optical fields and an external microwave (MW) field simultaneously. In such a mixing scheme, the coherence of the ground states could be controlled either by the Rabi frequency of the microwave field or by the relative phase between the optical fields and the MW field. Moreover, we investigated the Rabi resonance in this mixing scheme. The Rabi frequency of the MW field can be measured SI (International System of Units)-traceably based on the Rabi resonance lineshape, and thus holds the potential to realize intensity stabilization of the optical field in this system. Simple theoretical models and numerical calculations are also presented to explain the experimental results. There is scope to use the proposed technique in future development of SI-traceable optical field strength standards.

3.
Sci Adv ; 6(9): eaax6230, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32158936

RESUMO

Microresonator-based soliton frequency combs, microcombs, have recently emerged to offer low-noise, photonic-chip sources for applications, spanning from timekeeping to optical-frequency synthesis and ranging. Broad optical bandwidth, brightness, coherence, and frequency stability have made frequency combs important to directly probe atoms and molecules, especially in trace gas detection, multiphoton light-atom interactions, and spectroscopy in the extreme ultraviolet. Here, we explore direct microcomb atomic spectroscopy, using a cascaded, two-photon 1529-nm atomic transition in a rubidium micromachined cell. Fine and simultaneous repetition rate and carrier-envelope offset frequency control of the soliton enables direct sub-Doppler and hyperfine spectroscopy. Moreover, the entire set of microcomb modes are stabilized to this atomic transition, yielding absolute optical-frequency fluctuations at the kilohertz level over a few seconds and <1-MHz day-to-day accuracy. Our work demonstrates direct atomic spectroscopy with Kerr microcombs and provides an atomic-stabilized microcomb laser source, operating across the telecom band for sensing, dimensional metrology, and communication.

4.
Opt Express ; 26(3): 3696-3701, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401896

RESUMO

We report a demonstration of vapor-phase Rubidium (Rb) density stabilization in a vapor cell using a solid-state electrochemical Rb source device. Clear Rb density stabilization is observed. Further demonstrations show that the temperature coefficient for Rb density can be reduced more than 100 times when locked and the device's power consumption is less than 10 mW. Preliminary investigation of the locking dynamic range shows that the Rb density is well stabilized when the initial density is five times higher (33 × 109 /cm3) than the set point density (6 × 109 /cm3). Active stabilization with this device is of high interest for portable cold-atom microsystems where large ambient temperature working ranges and low power consumption are required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...