Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
EMBO J ; 39(11): e104150, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32347567

RESUMO

Alternative splicing regulates trans-synaptic adhesions and synapse development, but supporting in vivo evidence is limited. PTPδ, a receptor tyrosine phosphatase adhering to multiple synaptic adhesion molecules, is associated with various neuropsychiatric disorders; however, its in vivo functions remain unclear. Here, we show that PTPδ is mainly present at excitatory presynaptic sites by endogenous PTPδ tagging. Global PTPδ deletion in mice leads to input-specific decreases in excitatory synapse development and strength. This involves tyrosine dephosphorylation and synaptic loss of IL1RAPL1, a postsynaptic partner of PTPδ requiring the PTPδ-meA splice insert for binding. Importantly, PTPδ-mutant mice lacking the PTPδ-meA insert, and thus lacking the PTPδ interaction with IL1RAPL1 but not other postsynaptic partners, recapitulate biochemical and synaptic phenotypes of global PTPδ-mutant mice. Behaviorally, both global and meA-specific PTPδ-mutant mice display abnormal sleep behavior and non-REM rhythms. Therefore, alternative splicing in PTPδ regulates excitatory synapse development and sleep by modulating a specific trans-synaptic adhesion.


Assuntos
Proteína Acessória do Receptor de Interleucina-1/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Fases do Sono , Sinapses/metabolismo , Animais , Proteína Acessória do Receptor de Interleucina-1/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Tirosina Fosfatases/genética , Sinapses/genética
2.
Front Mol Neurosci ; 12: 250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680855

RESUMO

Netrin-G ligand-1 (NGL-1), encoded by Lrrc4c, is a post-synaptic adhesion molecule implicated in various brain disorders, including bipolar disorder, autism spectrum disorder, and developmental delay. Although previous studies have explored the roles of NGL-1 in the regulation of synapse development and function, the importance of NGL-1 for specific behaviors and the nature of related neural circuits in mice remain unclear. Here, we report that mice lacking NGL-1 (Lrrc4c-/- ) show strong hyperactivity and anxiolytic-like behavior. They also display impaired spatial and working memory, but normal object-recognition memory and social interaction. c-Fos staining under baseline and anxiety-inducing conditions revealed suppressed baseline neuronal activity as well as limited neuronal activation in widespread brain regions, including the anterior cingulate cortex (ACC), motor cortex, endopiriform nucleus, bed nuclei of the stria terminalis, and dentate gyrus. Neurons in the ACC, motor cortex, and dentate gyrus exhibit distinct alterations in excitatory synaptic transmission and intrinsic neuronal excitability. These results suggest that NGL-1 is important for normal locomotor activity, anxiety-like behavior, and learning and memory, as well as synapse properties and excitability of neurons in widespread brain regions under baseline and anxiety-inducing conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...