Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 22(7): 853-859, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37349395

RESUMO

III-nitride wide bandgap semiconductors are promising materials for modern optoelectronics and electronics. Their application has progressed greatly thanks to the continuous quality improvements of heteroepitaxial films grown on large-lattice-mismatched foreign substrates. But compared with bulk single crystals, there is still tremendous room for the further improvement of the material quality. Here we show a paradigm to achieve high-quality III-nitride heteroepitaxial films by the controllable discretization and coalescence of columns. By adopting nano-patterned AlN/sapphire templates with regular hexagonal holes, discrete AlN columns coalesce with uniform out-of-plane and in-plane orientations guaranteed by sapphire nitridation pretreatment and the ordered lateral growth of cleavage facets, which efficiently suppresses the regeneration of threading dislocations during coalescence. The density of dislocation etch pits in the AlN heteroepitaxial film reaches 3.3 × 104 cm-2, close to the present available AlN bulk single crystals. This study facilitates the growth of bulk-class quality III-nitride films featuring low cost and scalability.


Assuntos
Óxido de Alumínio , Eletrônica , Semicondutores , Software
2.
Photochem Photobiol Sci ; 22(4): 809-824, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36527588

RESUMO

The blue-light hazard (BLH) has raised concerns with the increasing applications of white light-emitting diodes (LEDs). Many researchers believed that the shorter wavelength or more light components generally resulted in more severe retinal damage. In this study, based on the conventional phosphor-coated white LED, we added azure (484 nm), cyan (511 nm), and red (664 nm) light to fabricate the low-hazard light source. The low-hazard light sources and conventional white LED illuminated 68 Sprague-Dawley (SD) rats for 7 days. Before and after light exposure, we measured the retinal function, thickness of retinal layers, and fundus photographs. The expression levels of autophagy-related proteins and the activities of oxidation-related biochemical indicators were also measured to investigate the mechanisms of damaging or protecting the retina. With the same correlated color temperature (CCT), the low-hazard light source results in significantly less damage on the retinal function and photoreceptors, even if it has two times illuminance and blue-light hazard-weighted irradiance ([Formula: see text]) than conventional white LED. The results illustrated that [Formula: see text] proposed by IEC 62471 could not exactly evaluate the light damage on rats' retinas. We also figured out that more light components could result in less light damage, which provided evidence for the photobiomodulation (PBM) and spectral opponency on light damage.


Assuntos
Luz , Retina , Ratos , Animais , Ratos Sprague-Dawley
3.
Nanomaterials (Basel) ; 12(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364656

RESUMO

Nanorod array and planar green-emission InGaN/GaN multi-quantum well (MQW) LEDs were fabricated by lithography, nano-imprinting, and top-down etching technology. The defect-pinning effect of the nanostructure was found for the first time. The ratio of the bright regions to the global area in the panchromatic CL images of green MQW samples increased from 30% to about 90% after nano-fabrication. The overall luminous performance significantly improved. Throughout temperature-dependent photoluminescence (TDPL) and time-resolved PL (TRPL) measurements, the migration and recombination of carriers in the MQWs of green LEDs were analyzed. It was proved that nanostructures can effectively prevent carriers from being captured by surrounding nonradiative recombination centers. The overall PL integral intensity can be enhanced to above 18 times. A much lower carrier lifetime (decreasing from 91.4 to 40.2 ns) and a higher internal quantum efficiency (IQE) (increasing from 16.9% to 40.7%) were achieved. Some disputes on the defect influence were also discussed and clarified.

4.
Light Sci Appl ; 11(1): 71, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35322013

RESUMO

Solving the doping asymmetry issue in wide-gap semiconductors is a key difficulty and long-standing challenge for device applications. Here, a desorption-tailoring strategy is proposed to juggle the carrier concentration and transport. Specific to the p-doping issue in Al-rich AlGaN, self-assembled p-AlGaN superlattices with an average Al composition of over 50% are prepared by adopting this approach. The hole concentration as high as 8.1 × 1018 cm-3 is thus realized at room temperature, which is attributed to the significant reduction of effective Mg activation energy to 17.5 meV through modulating the activating path, as well as the highlighted Mg surface-incorporation by an intentional interruption for desorption. More importantly, benefiting from the constant ultrathin barrier thickness of only three monolayers via this approach, vertical miniband transport of holes is verified in the p-AlGaN superlattices, greatly satisfying the demand of hole injection in device application. 280 nm deep-ultraviolet light-emitting diodes are then fabricated as a demo with the desorption-tailored Al-rich p-AlGaN superlattices, which exhibit a great improvement of the carrier injection efficiency and light extraction efficiency, thus leading to a 55.7% increase of the light output power. This study provides a solution for p-type doping of Al-rich AlGaN, and also sheds light on solving the doping asymmetry issue in general for wide-gap semiconductors.

5.
Nanomaterials (Basel) ; 11(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34835869

RESUMO

Localized surface plasmon (LSP) coupling with many radiators are investigated. The LSP is generated by excitation of laser or electron beam on the random Ag nano particles (NPs) and arrayed ones embedded in the p-GaN of green LEDs. They couple with the excitons or radiative recombination in the quantum well (QW) and electron beam, which enhance or suppress the luminescence of the radiators. The photoluminescence (PL) intensity of periodic Ag NPs can get as much as 4.5 times higher than that of bare LED. In addition to the periodic structure, the morphology of Ag NPs also affects the localized SP (LSP) resonance intensity and light scattering efficiency. In the finite difference time domain (FDTD) simulation, five x-polarized dipoles are approximated to five quantum wells. Considering the interaction between the five dipoles and their feedback effect on LSP, the enhancement effect of SP dipole coupling with Ag NPs is amplified and the energy dissipation is reduced. The enhancement of cathodoluminescence (CL) was also found in green LEDs with Ag NPs. The three-body model composed of two orthogonal dipoles and an Ag NP is used for 3D FDTD simulation. The LSP-QWs coupling effect is separated from the electron beam (e-beam)-LSP-QW system by linear approximation. Under the excitation of electron beam, the introduction of z-dipole greatly reduces the energy dissipation. In the cross-sectional sample, z-polarized dipoles in QWs show more coupling strength to the dipole and quadrupole modes of LSP. The perturbation theory is used to separate the LSP coupling effects to x-dipole and z-dipole. At last, the resonator and the antenna effects are discussed for LSP coupling at different positions to the Ag NP.

6.
Opt Express ; 29(20): 31594-31606, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615250

RESUMO

In this study, we propose a low-cost, simple and feasible post-processing approach to improve the light extraction efficiency (LEE) of LED packages. Amorphous photonic structures (APSs) with only short-range order are fabricated from anodic aluminum oxide (AAO) and transferred to intermediate polymer stamp (IPS) by nanoimprint technology. The IPS with APSs is directly mounted onto the surface of an LED package, where the LEE is achieved as 94.6%. The scanning electron microscope (SEM) images of AAO templates and imprinted IPS are analyzed by radial distribution function and diameter histogram. The far-field patterns of APS-mounted LED packages are measured in electroluminescence (EL). The three-dimensional finite-difference time-domain (3D-FDTD) calculations of transmittance of APSs confirm that they improve the light extraction above the critical angle. Two-dimensional Fourier power spectra from SEM images of APSs are also calculated. The LEE enhancement is attributed to that the APSs have short-range order on a length scale comparable to emission wavelength of LED. We provide novel multistage simulations in a simplified FDTD model for the LED package. Finally, we discuss the influence of the morphology of APSs on the LEE of the APS mounted LEDs.

7.
Sci Rep ; 11(1): 13059, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158564

RESUMO

Shift workers are mostly suffered from the disruption of circadian rhythm and health problems. In this study, we designed proper light environment to maintain stable circadian rhythm, cognitive performance, and mood status of shift workers. We used five-channel light-emitting diodes to build up the dynamic daylight-like light environment. The illuminance, correlated color temperature, and circadian action factor of light were tunable in the ranges of 226 to 678 lx, 2680 to 7314 K, and 0.32 to 0.96 throughout the day (5:30 to 19:40). During the nighttime, these parameters maintained about 200 lx, 2700 K, and 0.32, respectively. In this light environment, three subjects had engaged in shift work for 38 consecutive days. We measured plasma melatonin, activity counts, continuous performance tests, and visual analogue scale on mood to assess the rhythm, cognitive performance, and mood of subjects. After 38-day shift work, the subjects' peak melatonin concentration increased significantly. Their physiological and behavioral rhythms maintained stable. Their cognitive performance improved significantly after night work, compared with that before night work. Their mood status had no significant change during the 38-day shift work. These results indicated that the light environment was beneficial to maintain circadian rhythm, cognitive performance and mood status during long-term shift work in closed environment.


Assuntos
Afeto/efeitos da radiação , Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos da radiação , Cognição/fisiologia , Cognição/efeitos da radiação , Luz , Jornada de Trabalho em Turnos , Adulto , Humanos , Masculino , Melatonina/sangue , Escala Visual Analógica
8.
Opt Express ; 29(9): 13219-13230, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985061

RESUMO

Micro-LEDs can work under an extremely high injection level and are widely used in high-brightness micro-displays and visible light communication. With the increase of carrier concentration, many-body effects gradually become important factors affecting devices' characteristics. Considering the effects of carrier scattering, bandgap renormalization, and Coulomb enhancement (CE), changes in the electroluminescence spectra of micro-LEDs are analyzed as the current density increases from 49.2 to 358.2 kA/cm2, the latter representing an ultra-high injection level. Affected by plasma screening, CE decreases below about 150 kA/cm2. After that, polarization screening dominates and effectively alleviates the spatial separation of electrons and holes, which results in CE increases to the maximum injection level of 358.2 kA/cm2. It is established that CE promotes radiative recombination processes. Different from the traditional phenomenon of "efficiency droop", the enhanced attraction between carriers leads to an abnormal increase of external quantum efficiency at high current density.

9.
Nanomaterials (Basel) ; 10(5)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397390

RESUMO

Ag nanoparticles (NPs) are filled in a photonic crystal (PhC) hole array on green light emitting diodes (LEDs). The localized surface plasmon (LSP)-quantum well (QW) coupling effect is studied by measuring the cathodoluminescence (CL) spectra impinging at the specific spots on the Ag NPs. Twenty-six percent and fifty-two percent enhancements of the CL intensities are obtained at the center and edge of the Ag NP, respectively, compared to the result that the electron-beam (e-beam) excites the QW directly. To illustrate the coupling process of the three-body system of e-beam-LSP-QW, a perturbation theory combining a three-dimensional (3D) finite difference time domain (FDTD) simulation is put forward. The effects of the polarization orientation of the dipole and the field symmetry of the LSP on the LSP-QW coupling are also discussed.

10.
Sci Total Environ ; 732: 139334, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32438188

RESUMO

Humans can undergo circadian disruption and misalignment when living in closed environments without sufficient daylight. Therefore, it is of great significance to investigate the effects of artificial light on the circadian rhythm. In this work, the red, green, blue, warm white, and cool white (RGBWW) five-channel light-emitting diodes (LEDs) were fabricated as the only light sources in the closed environment. The LED mixed lighting showed a high color rendering index (CRI) all the time. During the day, the light simulated the daylight and increased the tunability of the circadian action factor (CAF) and correlated color temperature (CCT). At night, it maintained low CAF and CCT. Three subjects did irregular shift work in the closed environment for 38 days. Their plasma melatonin and daily activity were measured to assess the circadian rhythm. After 38 days, the subjects' peak melatonin times did not shift significantly (p = 0.676), while their peak melatonin concentrations increased apparently (p = 0.005). The start times of the least active 5-h period (L5) in one day fluctuated in a small range. The standard deviation (SD) was <15.11 min in most times. These results demonstrated that the subjects' rhythms maintained stable and were enhanced. The periods of circular cross-correlation between activity and CAF oscillated around 24 h (SD = 15.4 min), indicating the entrainment of light on the stable 24-h rhythm. It was concluded that the daylight-like LED lighting effectively entrained and enhanced the circadian rhythm in the closed environment.


Assuntos
Ritmo Circadiano , Temperatura Corporal , Cor , Humanos , Iluminação , Melatonina , Temperatura
11.
RSC Adv ; 9(42): 24203-24211, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35527886

RESUMO

The three-dimensional thermal characteristics of micro-light-emitting diodes (µLEDs) on GaN and sapphire substrates were studied with forward-voltage methods, thermal transient measurements, and infrared thermal imaging. The µLEDs on the GaN substrate showed an approximately 10 °C lower junction temperature and smaller amplitude of the K factors than those on the sapphire substrate under the current injection level of 4 kA cm-2. The thermal transient measurement showed that the spreading thermal resistances of the mesa, the GaN epilayer, and the interface of the GaN/substrate were reduced significantly for µLEDs on the GaN substrate because of the high-quality GaN crystal and the homogeneous interfaces. The infrared thermal images showed lower total average junction temperatures and more uniform temperature distributions for the µLEDs on the GaN substrate, which were also simulated with APSYS software. The thermal transport mechanisms are discussed for the lateral and vertical directions in the µLEDs.

12.
Nanomaterials (Basel) ; 8(4)2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29659499

RESUMO

We analyzed the coupling behavior between the localized surface plasmon (LSP) and quantum wells (QWs) using cathodoluminescence (CL) in a green light-emitting diodes (LED) with Ag nanoparticles (NPs) filled in photonic crystal (PhC) holes. Photoluminescence (PL) suppression and CL enhancement were obtained for the same green LED sample with the Ag NP array. Time-resolved PL (TRPL) results indicate strong coupling between the LSP and the QWs. Three-dimensional (3D) finite difference time domain (FDTD) simulation was performed using a three-body model consisting of two orthogonal dipoles and a single Ag NP. The LSP–QWs coupling effect was separated from the electron-beam (e-beam)–LSP–QW system by linear approximation. The energy dissipation was significantly reduced by the z-dipole introduction under the e-beam excitation. In this paper, the coupling mechanism is discussed and a novel emission structure is proposed.

13.
Opt Express ; 26(5): 5265-5274, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529731

RESUMO

GaN/InGaN multi-quantum-wells (MQWs) micron light emitting diodes (µLEDs) with the size ranging from 10 to 300 µm are fabricated. Effects of strain relaxation on the performance of µLEDs have been investigated both experimentally and numerically. Kelvin probe force microscopy (KPFM) and micro-photoluminescence (µPL) are used to characterize the strained area on micron pillars. Strain relaxation and reducing polarization field in MQWs almost affects the whole mesa for 10 µm LEDs and about 4% area around the lateral for 300 µm LEDs. It makes a great contribution to high performance for smaller size µLEDs. Moreover, an indirect nanoscale strain measurement for µLEDs are provided.

14.
RSC Adv ; 8(29): 16370-16377, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35542209

RESUMO

Ag nanoparticles (NPs) are fabricated on the cross-section of green emitting quantum wells (QWs). The effect of the dipole polarization orientation on the localized surface plasmon (LSP)-QW coupling can be studied by setting the incident direction of the electron beam parallel to the plane of the QWs. Cathodoluminescence (CL) measurements on the QWs show that the intensity with the Ag NPs is enhanced 6.1 times compared with that without the Ag NPs. Total energy loss profiles for an electron beam in the GaN and Ag NP are accurately simulated using a Monte Carlo program (CASINO). The orientations of the in-plane dipoles in the QWs can vary from 0° to 360°. Through a two-step simulation process using the three-dimensional (3D) finite difference time domain (FDTD) method, the weighted average of CL intensities are simulated for QWs with the Ag NPs. The simulation results agree well with the experimental results. Lastly, the dipole orientation dependent LSP-QW coupling process is discussed.

15.
Opt Express ; 24(10): A935-42, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409966

RESUMO

Angular distribution of polarized light and its effect on light extraction efficiency (LEE) in AlGaN deep-ultraviolet (DUV) light-emitting diodes (LEDs) are investigated in this paper. A united picture is presented to describe polarized light's emission and propagation processes. It is found that the electron-hole recombinations in AlGaN multiple quantum wells produce three kinds of angularly distributed polarized emissions and propagation process can change their intensity distributions. By investigation the change of angular distributions in 277nm and 215nm LEDs, this work reveals that LEE can be significantly enhanced by modulating the angular distributions of polarized light of DUV LEDs.

16.
Nanoscale Res Lett ; 11(1): 340, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27440081

RESUMO

InGaN/GaN nanorod light-emitting diode (LED) arrays were fabricated using nanoimprint and reactive ion etching. The diameters of the nanorods range from 120 to 300 nm. The integral photoluminescence (PL) intensity for 120 nm nanorod LED array is enhanced as 13 times compared to that of the planar one. In angular-resolved PL (ARPL) measurements, there are some strong lobes as resonant regime appeared in the far-field radiation patterns of small size nanorod array, in which the PL spectra are sharp and intense. The PL lifetime for resonant regime is 0.088 ns, which is 40 % lower than that of non-resonant regime for 120 nm nanorod LED array. At last, three dimension finite difference time domain (FDTD) simulation is performed. The effects of guided modes coupling in nanocavity and extraction by photonic crystals are explored.

17.
ACS Appl Mater Interfaces ; 8(28): 18208-14, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27351723

RESUMO

A novel nanoheteroepitaxy method, namely, the grouped and multistep nanoheteroepitaxy (GM-NHE), is proposed to attain a high-quality gallium nitride (GaN) epilayer by metal-organic vapor phase epitaxy. This method combines the effects of sub-100 nm nucleation and multistep lateral growth by using a low-cost but unique carbon nanotube mask, which consists of nanoscale growth windows with a quasi-periodic 2D fill factor. It is found that GM-NHE can facilely reduce threading dislocation density (TDD) and modulate residual stress on foreign substrate without any regrowth. As a result, high-quality GaN epilayer is produced with homogeneously low TDD of 4.51 × 10(7) cm(-2) and 2D-modulated stress, and the performance of the subsequent 410 nm near-ultraviolet light-emitting diode is greatly boosted. In this way, with the facile fabrication of nanomask and the one-off epitaxy procedure, GaN epilayer is prominently improved with the assistance of nanotechnology, which demonstrates great application potential for high-efficiency TDD-sensitive optoelectronic and electronic devices.

18.
Opt Express ; 19 Suppl 5: A1104-8, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21935252

RESUMO

In this paper, we propose and demonstrate a convenient and flexible approach for preparation large-area of photonic crystals (PhCs) structures on the GaN-based LED chip. The highly-ordered porous anodic alumina (AAO) with pitch of wavelength scale was adopted as a selective dry etching mask for PhCs-pattern transfer. The PhCs with different pore depths were simultaneously formed on the entire surfaces of GaN-based LED chip including ITO, GaN surrounding contacts and the sidewall of the mesa by one-step reactive ion etching (RIE). The light output power improvement of PhCs-based GaN LED was achieved as high as 94% compared to that of the conventional GaN-based LED.

19.
Opt Express ; 17(26): 23684-9, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20052079

RESUMO

The effects of the lattice pitch of GaN and polymer square-lattice photonic crystal (2PhC) on the diffracted transmission were studied by using rigorous coupled wave analysis (RCWA). Besides the first-order Bragg diffraction, higher-order diffractions from large pitches of PhC are also significant to the light extraction improvement. Three different diffraction mechanisms are illustrated through wave vector analysis. The enhancement factors of integrated transmission are obtained from a wide range of pitches with micro-scale for both GaN and polymer 2PhC. The experimental angular-resolved transmission on a transparent polymer sample of 2 microm pitch 2PhC is comparable to the simulation.


Assuntos
Gálio/química , Polímeros/química , Refratometria/métodos , Cristalização/métodos , Luz , Teste de Materiais , Fótons , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...