Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 358: 127294, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35550922

RESUMO

Microbial chain elongation fermentation is an alternative technology for medium-chain fatty acid (MCFA) production. This paper proposed the addition of pyrochar and graphene in chain elongation to improve MCFA production using ethanol and acetate as substrates. Results showed that the yield of, and selectivity towards, C6 n-caproate were significantly enhanced with pyrochar addition. At the optimal mass ratio of pyrochar to substrate of 2 g/g, the maximum n-caproate yield of 13.67 g chemical oxygen demand/L and the corresponding selectivity of 56.8% were obtained; this represents an increase of 115% and 128% respectively as compared with no pyrochar addition. Such improvements were postulated as due to the high electrical conductivity and surface redox groups of pyrochar. The optimal ethanol to acetate molar ratio of 2 mol/mol achieved the highest MCFA yield under pyrochar mediated chain elongation conditions. Thermodynamic calculations modelled an energy benefit of 93.50 kJ/mol reaction for pyrochar mediated n-caproate production.


Assuntos
Caproatos , Ácidos Graxos , Acetatos , Etanol , Fermentação , Termodinâmica
2.
ACS Sustain Chem Eng ; 9(32): 10771-10784, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35141053

RESUMO

To overcome the structural complexity and improve the bioconversion efficiency of Pennisetum purpureum into bioethanol or/and biomethane, the effects of ensiling pretreatment, NaOH pretreatment, and their combination on digestion performance and mass flow were comparatively investigated. The coproduction of bioethanol and biomethane showed that 65.2 g of ethanol and 102.6 g of methane could be obtained from 1 kg of untreated Pennisetum purpureum, and pretreatment had significant impacts on the production; however, there is no significant difference between the results of NaOH pretreatment and ensiling-NaOH pretreatment in terms of production improvement. Among them, 1 kg of ensiling-NaOH treated Pennisetum purpureum could yield 269.4 g of ethanol and 144.5 g of methane, with a respective increase of 313.2% and 40.8% compared to that from the untreated sample; this corresponded to the final energy production of 14.5 MJ, with the energy conversion efficiency of 46.8%. In addition, for the ensiling-NaOH treated Pennisetum purpureum, the energy recovery from coproduction (process III) was 98.9% higher than that from enzymatic hydrolysis and fermentation only (process I) and 53.6% higher than that from anaerobic digestion only (process II). This indicated that coproduction of bioethanol and biomethane from Pennisetum purpureum after ensiling and NaOH pretreatment is an effective method to improve its conversion efficiency and energy output.

3.
Bioresour Technol ; 295: 122289, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31670204

RESUMO

To enhance the biodegradability and methane production of hybrid Pennisetum, a pretreatment method with high selectivity for lignin removal, namely sodium chlorite/acetic acid (SCA) pretreatment, was examined in this work. Results showed that SCA pretreatment can selectively remove lignin with minimal impact on cellulose and hemicellulose. After up to 200 min of SCA treatment, 79.4% of lignin was removed and over 90% of the holocellulose was retained. The physicochemical changes after pretreatment were analyzed by confocal laser scanning microscopy, X-ray diffractometer and Fourier transform infrared spectroscopy, showing that the majority of lignin was removed from secondary cell walls and cell middle lamella while the chlorite-resistant lignin remained in the cell corner. Lignin removal significantly enhanced the biodegradability from 59.6% to 86.4% and increased methane production by 38.3%. Energy balance showed that SCA pretreatment was efficient to increase the energy output of hybrid Pennisetum.


Assuntos
Lignina , Pennisetum , Anaerobiose , Cloretos , Metano
4.
Bioresour Technol ; 255: 205-212, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29414168

RESUMO

Alkaline pretreatment with NaOH was used to improve methane yield from Pennisetum Hybrid. The pretreatments were carried out with different NaOH solutions (2-8% w/w) at three temperatures (35, 55 and 121 °C) for different periods of time (24, 24 and 1 h). All treated and untreated Pennisetum Hybrid were digested under mesophilic conditions (37 °C) to biogas, significant effects of the pretreatments on the yield of methane were observed. Results showed the modified Gompertz equation was reliable (determination coefficients (R2) greater than 0.96) to describe the kinetic behavior of anaerobic digestion of Pennisetum Hybrid. The best result, obtained by the treatment at 35 °C 2% NaOH for 24 h, resulted in the methane yield of 301.7 mL/g VS, corresponding to 21.0% improvement in the methane yield. Compositional, SEM, XRD and FTIR analysis confirmed that lignin removal, structural modification and cellulose crystalline variation were responsible for the improvement.


Assuntos
Biocombustíveis , Metano , Pennisetum , Anaerobiose , Celulose , Lignina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...