Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 349: 123905, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580062

RESUMO

With the acceleration of air cleaning activities in China, air pollution has entered a new stage characterized by seasonal interplay and predominance of fine particulate matter (PM2.5) and ozone (O3) pollutants. However, the differing peak seasons of these two pollution preclude the use of a unified indicator for air pollution complex. Given that peroxyacetyl nitrate (PAN) originates from secondary formation and persists under low-temperature conditions for extended periods, it is vital to determine whether its concentration can be used as an indicator to represent air pollution, not only in summer but also in winter. Here, PAN observational data from 2018 to 2022 for Beijing were analyzed. The results showed that during photochemical pollution events in summer, secondary formation of PAN was intense and highly correlated with O3 (R = 0.8), while during PM2.5 pollution events in winter, when the lifetime of PAN is extended due to the low temperature, the PAN concentration was highly consistent with the PM2.5 concentration (R = 0.9). As a result, the PAN concentration essentially exhibited consistency with both the seasonal trends in the exceedance of air pollution (R = 0.6) and the air quality index (R = 0.8). When the daily average concentration exceeds 0.5 and 0.9 ppb, the PAN concentration can be used as a complementary indicator of the occurrence of primary and secondary standard pollution, respectively. This study demonstrated the unique role of PAN as an indicator of air pollution complex, highlighting the comprehensive ability for air quality characterization and reducing the burden of atmospheric environment management.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Ozônio , Material Particulado , Ácido Peracético , Ácido Peracético/análogos & derivados , Estações do Ano , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Material Particulado/análise , Ozônio/análise , Ácido Peracético/análise , Pequim , China
2.
iScience ; 25(12): 105688, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36578322

RESUMO

Owing to the impact of the western development of China, there have been signs of air pollution over the Qinghai-Tibet Plateau in recent years. However, monitoring data on atmospheric volatile organic compounds (VOCs) are lacking in plateau areas. Here, VOCs concentrations in urban and background areas in North China and the Qinghai-Tibet Plateau were observed from 2012 to 2014 and 2020 to 2022, respectively. Compared to 2012-2014, the concentration of VOCs increased to 2.5 times in urban areas on the Qinghai-Tibet Plateau, which was equivalent to that in North China. Oil, gas, and solvent evaporation caused by a low atmospheric pressure is the primary factor for the increase in VOCs in plateau areas, and weak VOCs degradation is the secondary factor. Hence, we put forward the VOCs control strategies in plateau areas and point out the defects in the current research.

3.
Sci Total Environ ; 806(Pt 4): 150950, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656595

RESUMO

The vertical distribution of carbonaceous aerosol impacts climate change, air quality and human health, but there is a lack of in-situ vertical observations of black (BC) and brown carbon (BrC). Thus, the characteristic of vertical profiles of BC concentration, particle number concentration (PNC), O3 concentration and optical absorption of BC and BrC were observed in a suburban site over North China Plain, where heavy pollution of PM2.5 and O3 always occurred in winter and summer, respectively. In winter, during a heavy pollution episode, the BC and PNC was near uniformly distributed within mixing layer (ML) (15.2 ± 6.7 µg m-3 and 678 ± 227 p cm-3, respectively) and decreased with altitude above the ML. The BC heating rate reached about 0.13 K h-1 during the heaviest pollution day. In summer, the BC concentration (2.9 ± 1.3 µg m-3) in ML during the middle O3 pollution events was higher than that (1.7 ± 0.6 µg m-3) during the light O3 pollution. The light absorption coefficients of BC at 880 nm and BrC at 375 nm measured in the early morning were lower than that in the daytime, and the contribution of BrC to total light absorption of carbonaceous aerosols was in the range of 27-47%. In addition, BC was effectively transported to high altitude than BrC in the daytime. The light absorption of secondary BrC in the daytime was higher 10-20% than that in the early morning. Simultaneously, the contribution of secondary BrC to the total BrC light absorption at 375 nm was range from 32% to 68% within 1000 m.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental , Humanos , Material Particulado/análise
4.
Sci Total Environ ; 799: 149438, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426343

RESUMO

Oxygenated volatile organic compounds (OVOCs) are important precursors of secondary air pollutants. However, knowledge of the vertical characteristics of OVOCs in the lower troposphere is lacking. Pairs of OVOCs samples were simultaneously collected via 2,4-dinitrophenylhydrazine (DNPH) near the ground and in the upper boundary layer (at 500 m in winter and 600 m in summer) with a tethered balloon in Shijiazhuang in January and June 2019. The samples were analyzed via high-performance liquid chromatography (HPLC), and 26 vertical profiles of 13 OVOCs were obtained in this study. In winter, the average concentrations of the total OVOCs (TOVOCs) in the upper boundary layer and near the ground were 7.9 ± 4.1 ppbv and 5.5 ± 2.8 ppbv, respectively; while in summer, the average concentrations were 7.1 ± 3.5 ppbv and 6.5 ± 2.7 ppbv, respectively. Acetone, formaldehyde and acetaldehyde were the three main components accounting for more than 80% of the TOVOCs. Significant vertical differences were observed before sunrise in winter and in the afternoon in summer. The TOVOCs concentration in the residual layer (8.4 ± 3.6 ppbv) was higher than that near the ground (6.0 ± 2.5 ppbv), while in the summer afternoon, the concentration in the upper mixing layer (ML) (9.5 ± 2.2 ppbv) was higher than that near the ground (5.8 ± 3.1 ppbv). OVOCs sources were examined with a positive matrix factorization (PMF) model. In winter, the small-molecule carbonyls (SMCs) in the upper boundary layer are mainly derived from secondary + long-lived species (68.4%) because volatile organic compounds at high concentrations were oxidized into OVOCs. In summer, the SMCs in the upper ML were mainly affected by elevated industrial point source emissions (42.9%). These data indicate that vertical gradient observations of SMCs are an important supplement to advance current air pollution research.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Gases , Compostos Orgânicos Voláteis/análise
5.
Sci Total Environ ; 788: 147740, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34134376

RESUMO

Clarifying the relationship between meteorological factors and ozone can provide scientific support for ozone pollution prediction, but the effects of boundary layer meteorology, especially boundary layer height and turbulence, on ozone pollution are rarely studied. Here, ozone and its related meteorological factors were observed in summer in Shijiazhuang, a city with the most serious ozone pollution on the North China Plain. The forced and free convection boundary layers were classified using ground remote observations. After eliminating the forced convection condition, strong free convection conditions, exhibiting a high boundary layer height, high wind speed, strong turbulence and large-scale free convection velocity, were found to be beneficial for the aggravation of ozone pollution. Combined with the ozone profile detected by a tethered balloon, the ozone chemical budget was calculated using the differences in the column ozone concentrations between the morning and afternoon, and the results confirmed the impact of free convection intensity on ozone pollution. The change in ozone sensitivity from VOCs sensitivity to NOx sensitivity driven by strong free convection was the main reason for the deterioration of ozone pollution. This study clarified the impact of boundary layer meteorology on ozone and its sensitivity and has important practical significance for ozone pollution prevention and early warning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...