Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959659

RESUMO

Polydeoxyribonucleotide (PDRN) has the ability to regenerate skin cells and improve the skin barrier and wound healing. This study investigated the possibility of replacing animal-derived PDRN with plant-derived PDRN. To test this, the adventitious roots of Korean ginseng (Panax ginseng C.A. Meyer), which is commonly used to treat various diseases, were suspension-cultivated through tissue culture; subsequently, PDRN was purified using microfluidization, an ultra-high-pressure physical grinding method. The results showed that purified Panax PDRN was effective in healing skin wounds and enhancing the skin barrier. Panax PDRN promoted the proliferation of keratinocytes and fibroblasts by increasing the expression of fibronectin, filaggrin, Ki-67, Bcl-2, inhibin beta A, and Cyclin D1. It also acted as an agonist of the adenosine A2A receptor and induced the phosphorylation of focal adhesion kinase, adenosine triphosphate-dependent tyrosine kinase, and mitogen-activated protein kinase. This activated signal transduction, thereby regenerating skin cells and strengthening the barrier. These results were not only observed in skin cells but also in an artificial skin model (KeraSkinTM). The use of plant-derived PDRN instead of animal-derived PDRN can promote animal welfare and environmental sustainability. Furthermore, Panax PDRN can potentially be a new plant-derived PDRN (PhytoPDRN) that may be utilized in the treatment of various skin diseases.


Assuntos
Panax , Polidesoxirribonucleotídeos , Animais , Polidesoxirribonucleotídeos/farmacologia , Pele , Cicatrização , Queratinócitos
2.
Ann Surg Treat Res ; 101(5): 281-290, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34796144

RESUMO

PURPOSE: Microbiota manipulation through selected probiotics may be a promising tool to prevent cancer development as well as onset, to improve clinical efficacy for cancer treatments. The purpose of this study was to evaluate change in microbiota composition after-probiotics supplementation and assessed the efficacy of probiotics in improving quality of life (QOL) in postoperative cancer patients. METHODS: Stool samples were collected from 30 cancer patients from February to October 2020 before (group I) and after (group II) 8 weeks of probiotics supplementation. We performed 16S ribosomal RNA gene sequencing to evaluate differences in gut microbiota between groups by comparing gut microbiota diversity, overall composition, and taxonomic signature abundance. The health-related QOL was evaluated through the EORTC Quality of life Questionnaire Core 30 questionnaire. RESULTS: Statistically significant differences were noted in group II; increase of Shannon and Simpson index (P = 0.004 and P = 0.001), decrease of Bacteroidetes and Fusobacteria at the phylum level (P = 0.032 and P = 0.014, retrospectively), increased of beneficial bacteria such as Weissella (0.096% vs. 0.361%, P < 0.004), Lactococcus (0.023% vs. 0.16%, P < 0.001), and Catenibacterium (0.0% vs. 0.005%, P < 0.042) at the genus level. There was a significant improvement in sleep disturbance (P = 0.039) in group II. CONCLUSION: Gut microbiota in cancer patients can be manipulated by specific probiotic strains, result in an altered microbiota. Microbiota modulation by probiotics can be considered as part of a supplement that helps to increase gut microbiota diversity and improve QOL in cancer patients after surgery.

3.
Ann Surg Treat Res ; 94(6): 312-321, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29854709

RESUMO

PURPOSE: Little is known about the clinical value of peripheral blood immune profiling. Here, we aimed to identify colorectal cancer (CRC)-related peripheral blood immune cells and develop liquid biopsy-based immune profiling models for CRC diagnosis. METHODS: Peripheral blood from 131 preoperative patients with CRC and 174 healthy controls was analyzed by flow cytometry and automated hematology. CRC-related immune factors were identified by comparing the mean values of immune cell percentages and counts. Subsequently, CRC diagnostic algorithms were constructed using binary logistic regression. RESULTS: Significant differences were observed in percentages and counts of white blood cells, lymphocytes, neutrophils, regulatory T cells, and myeloid-derived suppressor cells (MDSCs) of patients and controls. The neutrophil/lymphocyte and Th1/Th2 ratios were also significantly different. Likewise, the percentages and counts of peripheral blood programed death 1, cytotoxic T lymphocyte antigen 4, B-and T-lymphocyte attenuator, and lymphocyte activation gene-3 were higher in patients with CRC. The binary logistic regression model included 12 variables, age, CD3+%, NK%, CD4+CD279+%, CD4+CD25+%, CD4+CD152+%, CD3+CD366+%, CD3+CD272+%, CD3+CD223+%, CD158b-CD314+CD3-CD56+%, Th2%, and MDSCs cells/µL, for the prediction of cancer. Results of retrospective and prospective evaluation of the area under the curve, sensitivity, and specificity were 0.980 and 0.940, 91.53% and 85.80%, and 93.50% and 86.20%, respectively. CONCLUSION: Peripheral blood immune profiling may be valuable in evaluating the immunity of CRC patients. Our liquid biopsy-based immune diagnostic method and its algorithms may serve as a novel tool for CRC diagnosis. Future largescale studies are needed for better characterization of its diagnostic value and potential for clinical application.

4.
Plant Mol Biol ; 95(4-5): 463-479, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29038916

RESUMO

KEY MESSAGE: Plant RbgA GTPase is targeted to chloroplasts and co-fractionated with chloroplast ribosomes, and plays a role in chloroplast rRNA processing and/or ribosome biogenesis. Ribosome Biogenesis GTPase A (RbgA) homologs are evolutionarily conserved GTPases that are widely distributed in both prokaryotes and eukaryotes. In this study, we investigated functions of chloroplast-targeted RbgA. Nicotiana benthamiana RbgA (NbRbgA) and Arabidopsis thaliana RbgA (AtRbgA) contained a conserved GTP-binding domain and a plant-specific C-terminal domain. NbRbgA and AtRbgA were mainly localized in chloroplasts, and possessed GTPase activity. Since Arabidopsis rbgA null mutants exhibited an embryonic lethal phenotype, virus-induced gene silencing (VIGS) of NbRbgA was performed in N. benthamiana. NbRbgA VIGS resulted in a leaf-yellowing phenotype caused by disrupted chloroplast development. NbRbgA was mainly co-fractionated with 50S/70S ribosomes and interacted with the chloroplast ribosomal proteins cpRPL6 and cpRPL35. NbRbgA deficiency lowered the levels of mature 23S and 16S rRNAs in chloroplasts and caused processing defects. Sucrose density gradient sedimentation revealed that NbRbgA-deficient chloroplasts contained reduced levels of mature 23S and 16S rRNAs and diverse plastid-encoded mRNAs in the polysomal fractions, suggesting decreased protein translation activity in the chloroplasts. Interestingly, NbRbgA protein was highly unstable under high light stress, suggesting its possible involvement in the control of chloroplast ribosome biogenesis under environmental stresses. Collectively, these results suggest a role for RbgA GTPase in chloroplast rRNA processing/ribosome biogenesis, affecting chloroplast protein translation in higher plants.


Assuntos
Arabidopsis/enzimologia , Proteínas de Cloroplastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Nicotiana/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/enzimologia , Cloroplastos/genética , GTP Fosfo-Hidrolases/genética , Inativação Gênica , Biogênese de Organelas , Folhas de Planta/enzimologia , Folhas de Planta/genética , Polirribossomos/genética , Transporte Proteico , RNA Mensageiro/genética , RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Nicotiana/genética
5.
Mol Cells ; 38(10): 866-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26434491

RESUMO

COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed α-, ß-, ß'-, γ-, δ-, ε-, and ζ-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The ß'-, γ-, and δ-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of ß'-, γ-, and δ-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of ß'-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Complexo I de Proteína do Envoltório/fisiologia , Complexo de Golgi/metabolismo , Nicotiana/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Apoptose , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Proteína Coatomer/genética , Proteína Coatomer/metabolismo , Proteína Coatomer/fisiologia , Citocinese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte Proteico/fisiologia , Interferência de RNA , Nicotiana/genética , Nicotiana/metabolismo
6.
Immune Netw ; 14(6): 289-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25550695

RESUMO

Flow cytometric immunophenotyping of peripheral blood lymphocyte subsets is a powerful tool for evaluating cellular immunity and monitoring immune-mediated diseases. The numbers and proportions of blood lymphocyte subsets are influenced by factors such as gender, age, ethnicity, and lifestyle. This study aimed to establish reference ranges for peripheral blood lymphocyte subsets in a healthy Korean population. Blood samples from 294 healthy adults were collected. Lymphocyte subsets were analyzed using a single-platform method with a flow cytometer; white blood cells and lymphocytes were analyzed using an automated hematology analyzer. The mean value of the white blood cell count was 5,665 cells/µl, and the mean values of the subtype counts (percentages) were as follows: lymphocytes, 1,928 cells/µl (35.08%); CD3(+) cells, 1,305 cells/µl (67.53%); CD3(+)CD4(+) cells, 787 cells/µl (40.55%); CD3(+)CD8(+) cells, 479 cells/µl (25.23%); CD3(-)CD19(+) cells, 203 cells/µl (10.43%); and CD3(-)CD56(+) cells, 300 cells/µl (15.63%). Additionally, the CD4(+)/CD8(+) ratio was 1.81. In this study, gender and age significantly influenced blood lymphocyte subsets. Our results demonstrate that, as with other populations, a healthy Korean population has its own, region-specific, lymphocyte subset reference ranges.

7.
J Korean Surg Soc ; 85(5): 230-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24266014

RESUMO

PURPOSE: This study aimed to assess the cytolytic activity and the phenotype of circulating blood immune cells in cancer patients by using a simple preparation of peripheral blood mononuclear cells (PBMCs). METHODS: Peripheral blood was obtained from 94 diagnosed colorectal cancer (CRC) patients and 112 healthy donors. PBMCs were cocultured with K562 cells for 2 hours and lactate dehydrogenase released from the dead K562 cells was measured by using a spectrophotometer. Meanwhile, PBMCs were stained with fluorescence conjugated monoclonal antibodies (mAbs) and analyzed by flow cytometry. RESULTS: The cytolytic activity of PBMCs were significantly different between CRC patient and healthy groups (8.82% ± 3.84% vs. 17.51% ± 8.57%; P < 0.001). However, no significant difference in the cytolytic activity was observed after surgery in the CRC patient group (before surgery, 8.82% ± 3.84% vs. after surgery, 9.95% ± 4.94%; P = 0.326). In addition, the percentage of peripheral blood natural killer cells was significantly higher in the preoperative patient group than in the healthy group (19.97% ± 11.51% vs. 15.60% ± 5.77%, P = 0.041). In contrast, the percentage of peripheral blood lymphocytes was lower in the preoperative patient group than in the healthy group (28.41% ± 8.31% vs. 36.4% ± 8.6%, P < 0.001). CONCLUSION: These results demonstrate that circulating blood immune cells of CRC patients are functionally impaired and undergo an immunophenotypic perturbation, and show that a simple preparation of PBMCs can be useful to evaluate cellular immunity in cancer.

8.
Mol Cells ; 34(2): 185-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22729372

RESUMO

We previously showed that silencing of NbBPS1 encoding an endoplasmic reticulum (ER)-localized protein results in pleiotrophic developmental defects and cell death in Nicotiana benthamiana [Kang et al. (2008)]. In this study, we investigated the mechanism of the cell death caused by NbBPS1 silencing. Affected leaf cells exhibited morphological markers of programmed cell death (PCD) and accumulated excessive amounts of reactive oxygen species. NbBPS1 silencing caused dramatic induction of the ER stress marker genes BiP-like protein (BLP) genes, HSP70, and Bax Inhibitor-1. Furthermore, NbBPS1 deficiency led to relocalization of bZIP28 transcription factor from the ER membrane to the nucleus, similar to the bZIP28 relocalization during tunicamycin-induced ER stress. Abnormal accumulation of vesicles and increased autophagy activity were also observed in the affected leaf cells. These results suggest that inactivation of NbBPS1 function in the ER leads to ER stress, autophagy, and PCD activation in N. benthamiana.


Assuntos
Nicotiana/citologia , Nicotiana/genética , Proteínas de Plantas/genética , Animais , Autofagia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Plant Mol Biol ; 72(6): 569-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20047069

RESUMO

Sulfite reductase (SiR) performs dual functions, acting as a sulfur assimilation enzyme and as a chloroplast (cp-) nucleoid binding protein. In this study, we examined the in vivo effects of SiR deficiency on chloroplast development in Nicotiana benthamiana. Virus-induced gene silencing of NbSiR resulted in leaf yellowing and growth retardation phenotypes, which were not rescued by cysteine supplementation. NbSiR:GFP fusion protein was targeted to chloroplasts and colocalized with cp-nucleoids. Recombinant full-length NbSiR protein and the C-terminal half of NbSiR possessed cp-DNA compaction activities in vitro, and expression of full-length NbSiR in E. coli caused condensation of genomic DNA. NbSiR silencing differentially affected expression of plastid-encoded genes, inhibiting expression of several genes more severely than others. In the later stages, depletion of NbSiR resulted in chloroplast ablation. In NbSiR-silenced plants, enlarged cp-nucleoids containing an increased amount of cp-DNA were observed in the middle of the abnormal chloroplasts, and the cp-DNAs were predominantly of subgenomic sizes based on pulse field gel electrophoresis. The abnormal chloroplasts developed prolamellar body-like cubic lipid structures in the light without accumulating NADPH:protochlorophyllide oxidoreductase proteins. Our results suggest that NbSiR plays a role in cp-nucleoid metabolism, plastid gene expression, and thylakoid membrane development.


Assuntos
Cloroplastos/genética , Nicotiana/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Proteínas de Plantas/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Cisteína/farmacologia , DNA de Plantas/metabolismo , Inativação Gênica , Proteínas de Fluorescência Verde/análise , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/fisiologia , Fenótipo , Proteínas de Plantas/fisiologia , Proteínas Recombinantes de Fusão/análise , Glycine max/genética , Nicotiana/efeitos dos fármacos , Nicotiana/ultraestrutura
10.
Biochem Biophys Res Commun ; 388(3): 560-4, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19682975

RESUMO

The principal objective of this study was to explore protein conformational changes using fluorescence resonance energy transfer (FRET) technology. Maltose binding protein (MBP) was adopted as a target model, due to its well-characterized structure and ligand specificity. To the best of our knowledge, this is the first report to provide information regarding the biological distance between the two lobes of MBP upon maltose binding. For the FRET pair, ECFP and EYFP were used as the donor and the acceptor, and were linked genetically to the C-terminal and N-terminal regions of MBP (ECFP:MBP:EYFP), respectively. After the FRET reaction, maltose-treated MBP was shown to exhibit a considerable energy transfer (FRET efficiency (E)= approximately 0.11, Distance (D)= approximately 6.93 nm) at the ensemble level, which was regarded as reflective of the increase in donor quenching and the upshift in acceptor emission intensity, thereby suggesting that the donor and the acceptor had been brought close together as the result of structural alterations in MBP. However, upon glucose treatment, no FRET phenomenon was detected, thereby implying the specificity of interaction between MBP and maltose. The in vitro FRET results were also confirmed via the acceptor photobleaching method. Therefore, our data showed that maltose-stimulated conformational changes of MBP could be measured by FRET, thereby providing biological information, including the FRET efficiency and the intramolecular distance.


Assuntos
Proteínas de Transporte/química , Transferência Ressonante de Energia de Fluorescência/métodos , Maltose/química , Proteínas Ligantes de Maltose , Conformação Proteica
11.
Plant Mol Biol ; 68(4-5): 423-37, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18716882

RESUMO

The Arabidopsis bypass1 mutant (bps1) exhibits defective shoot and root growth that is associated with constitutive production of a root-derived carotenoid-related signal (Van Norman et al., Curr Biol 14:1739-1746, 2004). Since the identity of the signal and the function of BPS1 are still unknown, we investigated effects of BPS1 depletion in Nicotiana benthamiana to elucidate BPS1 function in plant growth and development. The predicted protein of NbBPS1, a BPS1 homolog of N. benthamiana, contains a central transmembrane domain, and a NbBPS1:GFP fusion protein was mainly associated with the endoplasmic reticulum. Virus-induced gene silencing (VIGS) of NbBPS1 resulted in pleiotrophic phenotypes, including growth retardation and abnormal leaf development. At the cellular level, the plants exhibited hyperproliferation of the cambial cells and defective xylem differentiation during stem vascular development. Hyperactivity of the cambium was associated with an elevated auxin and cytokinin response. In contrast, the leaves had reduced numbers of cells with increased cell size and elevated endoreduplication. Cell death in NbBPS1 VIGS leaves started with vacuole collapse, followed by degeneration of the organelles. Interestingly, these phenotypes were mainly caused by silencing of NbBPS1 in the aerial parts of the plants, different from the case of the Arabidopsis bps1 mutant. These results suggest that NbBPS1 plays a role in the control of cell division and differentiation in the cambium of N. benthamiana, and BPS homologs may have a diverse function in different tissues and in different species.


Assuntos
Inativação Gênica , Nicotiana/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Morte Celular , Diferenciação Celular , Proliferação de Células , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Dados de Sequência Molecular , Fenótipo , Filogenia , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Caules de Planta/citologia , Caules de Planta/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Frações Subcelulares/metabolismo , Nicotiana/citologia , Nicotiana/genética , Xilema/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...