Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-12, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36756951

RESUMO

Removal of dissolved zinc (Zn) from water by a novel alkali-activated material (AAM) prepared from steel industry slags in a fixed-bed column was investigated. Design of experiments was used to find the optimum operation parameters [flow rate (Q), adsorbent mass, (mads), and initial Zn concentration (C0)] for the removal of Zn2+ from a ZnCl2 solution. Regression models for the breakthrough (qb), and saturation (qsat) capacities of the bed and three other response parameters as functions of Q, mads and C0 were fitted with coefficients of determination (R2) ranging from 0.48 to 0.99. Experimental values of qb and qsat varied within 1.42-7.03 mg Zn/g and 10.57-17.25 mg Zn/g, respectively. The optimum operation parameters were determined to be Q= 1.64 ml/min and mads= 4.5 g, whereas C0 had negligible effect on the response parameters in the range 73-107 mg Zn/l. Finally, three empirical breakthrough curve (BTC) models were employed to describe the individual BTCs of which the modified dose - response model was found to give the best fit (0.960 ≤ R2 ≤ 0.998). The results of the present work demonstrate that the novel AAM has considerable potential to be utilized in water purification applications.

2.
Environ Sci Pollut Res Int ; 30(6): 14139-14154, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36149556

RESUMO

Naturally occurring layered double hydroxide mineral, brucite (BRU), was compared with hydromagnesite (HYD) and a commercial Mg-rich mineral adsorbent (trade name AQM PalPower M10) to remove antimony (Sb) from synthetic and real wastewaters. The BRU and HYD samples were calcined prior to the experiments. The adsorbents were characterized using X-ray diffraction, X-ray fluorescence, and Fourier transform infrared spectroscopy. Batch adsorption experiments were performed to evaluate the effect of initial pH, Sb concentration, adsorbent dosage, and contact time on Sb removal from synthetic wastewater, mine effluent, and textile industry wastewater. Several isotherm models were applied to describe the experimental results. The Sips model provided the best correlation for the BRU and M10. As for the HYD, three models (Langmuir, Sips, and Redlich-Peterson) fit well to the experimental results. The results showed that the adsorption process in all cases followed the pseudo-second-order kinetics. Overall, the most efficient adsorbent was the BRU, which demonstrated slightly higher experimental maximum adsorption capacity (27.6 mg g-1) than the HYD (27.0 mg g-1) or M10 (21.3 mg g-1) in the batch experiments. Furthermore, the BRU demonstrated also an efficient performance in the continuous removal of Sb from mine effluent in the column mode. Regeneration of adsorbents was found to be more effective under acidic conditions than under alkaline conditions.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Antimônio/química , Poluentes Químicos da Água/análise , Indústria Têxtil , Minerais , Hidróxido de Magnésio , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Water Environ Res ; 93(8): 1303-1314, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33471397

RESUMO

Activated carbon from sawdust was produced with an environmentally friendly process involving single-stage carbonization and activation with steam at 800°C. Production process is scalable because lignocellulosic biomass is ubiquitous worldwide as a waste or as a virgin material. Single-stage production without any cooling steps between carbonization and activation is easier in larger scale production. Monometal adsorption and multimetal adsorption of cobalt, nickel, and zinc were investigated by using the produced carbon, with a commercial one as control. Effect of pH, initial metal concentration, adsorbent dosage, and adsorption time was evaluated in batch experiments. Multimetal experiments showed the order of the maximum adsorption capacities: zinc > nickel > cobalt. Experimental adsorption capacities were 17.2, 6.6, and 4.5 mg/g for zinc, nickel, and cobalt, respectively, in multisolute adsorption. In case of monometal adsorption, adsorption capacity was notably lower. Experimental data fitted into the single-solute and multisolute Freundlich models. The best fit kinetic model varied among the metals. The Weber and Morris intraparticle diffusion model was used. Regeneration was performed with 0.1 M HNO3 , 0.1 M HCl, or 0.1 M H2 SO4 . The adsorption capacity remained at the same within three adsorption-desorption cycles. PRACTITIONER POINTS: Activated carbon was produced from sawdust with environmentally friendly process Monometal adsorption and multimetal adsorption with heavy metals were studied Best-fitting models to the experimental data were single-solute and multisolute Freundlich models Regeneration could be performed with diluted acids Worldwide available raw material successfully used as adsorbent for heavy metals.


Assuntos
Metais Pesados , Adsorção , Biomassa , Carvão Vegetal , Porosidade
4.
Environ Technol ; 41(8): 971-980, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30136614

RESUMO

Biomass-based carbon was modified and used as an efficient bisphenol A (BPA) sorbent. The simple and environmentally friendly modification method produced sorbent with a capacity of 41.5 mg/g. The raw material was modified with FeCl3 (Fe-CR), treated with hydrochloric acid (H-CR) or modified with CaCl2 (Ca-CR). Batch sorption experiments were performed to evaluate the effects of the initial pH, sorbent dosage, temperature, and contact time on BPA removal. BPA removal with modified carbons was notably higher than that with unmodified carbon. All sorbent materials exhibited very high sorption capacities and compared favourably to materials reported in the literature. Several isotherms were applied to describe the experimental results of Fe-CR, H-CR, and Ca-CR modified carbon residues and the Sips model showed the best fit for all sorbents. Kinetic studies for the best sorbent material (Fe-CR) showed that the sorption process follows Elovich kinetics. Desorption cycles were implemented, and sorption capacity remained with three cycles.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Compostos Benzidrílicos , Biomassa , Carbono , Concentração de Íons de Hidrogênio , Cinética , Fenóis , Termodinâmica
5.
Environ Technol ; 39(8): 952-966, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28406056

RESUMO

In the present study, the adsorption of sulfates of sodium sulfate (Na2SO4) and sodium lauryl sulfate (SLS) by calcium hydroxyapatite-modified microfibrillated cellulose was studied in the aqueous solution. The adsorbent was characterized using elemental analysis, Fourier transform infrared, scanning electron microscope and elemental analysis in order to gain the information on its structure and physico-chemical properties. The adsorption studies were conducted in batch mode. The effects of solution pH, contact time, the initial concentration of sulfate and the effect of competing anions were studied on the performance of synthesized adsorbent for sulfate removal. Adsorption kinetics indicated very fast adsorption rate for sulfate of both sources (Na2SO4 and SLS) and the adsorption process was well described by the pseudo-second-order kinetic model. Experimental maximum adsorption capacities were found to be 34.53 mg g-1 for sulfates of SLS and 7.35 mg g-1 for sulfates of Na2SO4. The equilibrium data were described by the Langmuir, Sips, Freundlich, Toth and Redlich-Peterson isotherm models using five different error functions.


Assuntos
Celulose/química , Durapatita/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfatos , Termodinâmica , Poluentes Químicos da Água
6.
J Hazard Mater ; 317: 373-384, 2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27318734

RESUMO

Blast-furnace slag and metakaolin were geopolymerised, modified with barium or treated with a combination of these methods in order to obtain an efficient SO4(2-) sorbent for mine water treatment. Of prepared materials, barium-modified blast-furnace slag geopolymer (Ba-BFS-GP) exhibited the highest SO4(2-) maximum sorption capacity (up to 119mgg(-1)) and it compared also favourably to materials reported in the literature. Therefore, Ba-BFS-GP was selected for further studies and the factors affecting to the sorption efficiency were assessed. Several isotherms were applied to describe the experimental results of Ba-BFS-GP and the Sips model showed the best fit. Kinetic studies showed that the sorption process follows the pseudo-second-order kinetics. In the dynamic removal experiments with columns, total SO4(2-) removal was observed initially when treating mine effluent. The novel modification method of geopolymer material proved to be technically suitable in achieving extremely low concentrations of SO4(2-) (<2mgL(-1)) in mine effluents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...