Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 10(11): 5087-5098, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37681478

RESUMO

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a material that has become ubiquitous in the field of organic electronics. It is most commonly used as a hole transport layer (HTL) in optoelectronic devices and can be purchased commercially in various formulations with different properties. Whilst it is a most convenient material to work with, there are stability issues associated with PEDOT:PSS that are detrimental to device stability and these are due to the acidic nature of the PSS component. In this paper, we present a molecular, non-acidic alternative to PEDOT:PSS. The parent structure is composed of a quater(3,4-ethylenedioxythiophene) unit capped either side of the short chain with two pyridine units. This compound, termed (BEDOTPy)2, can be prepared chemically and electrochemically to give doped materials with a choice of counteranions. Further functionalisation via quaternisation at the nitrogen atoms allows for modification of solubility and film-forming properties. The conductivity of the doped samples can reach up to 3.75 S cm-1. The materials are non-acidic and are therefore attractive alternatives to PEDOT:PSS for device applications. We demonstrate an OLED device using the compound (BEDOTPy-EtOH-I)2PF6 as an HTL, and compare the device performance to one made with PEDOT:PSS. Due to the non-acidic nature of the molecular material, the corresponding OLED device does not show a drop in luminance over time, whereas a loss of performance is observed for the device containing PEDOT:PSS over a short period. These results are presented to introduce the parent compound (BEDOTPy)2 as an attractive alternative to PEDOT:PSS, which can be easily modified chemically to provide a plethora of potential compounds with tunable properties.

2.
Nature ; 621(7980): 746-752, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37758890

RESUMO

Organic semiconductors are carbon-based materials that combine optoelectronic properties with simple fabrication and the scope for tuning by changing their chemical structure1-3. They have been successfully used to make organic light-emitting diodes2,4,5 (OLEDs, now widely found in mobile phone displays and televisions), solar cells1, transistors6 and sensors7. However, making electrically driven organic semiconductor lasers is very challenging8,9. It is difficult because organic semiconductors typically support only low current densities, suffer substantial absorption from injected charges and triplets, and have additional losses due to contacts10,11. In short, injecting charges into the gain medium leads to intolerable losses. Here we take an alternative approach in which charge injection and lasing are spatially separated, thereby greatly reducing losses. We achieve this by developing an integrated device structure that efficiently couples an OLED, with exceptionally high internal-light generation, with a polymer distributed feedback laser. Under the electrical driving of the integrated structure, we observe a threshold in light output versus drive current, with a narrow emission spectrum and the formation of a beam above the threshold. These observations confirm lasing. Our results provide an organic electronic device that has not been previously demonstrated, and show that indirect electrical pumping by an OLED is a very effective way of realizing an electrically driven organic semiconductor laser. This provides an approach to visible lasers that could see applications in spectroscopy, metrology and sensing.

3.
Adv Mater ; : e2302259, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37086184

RESUMO

The field of synthetic metals is, and remains, highly influential for the development of organic semiconductor materials. Yet, with the passing of time and the rapid development of conjugated materials in recent years, the link between synthetic metals and organic semiconductors is at risk of being forgotten. This review reflects on one of the key concepts developed in synthetic metals - heteroatom interactions. The application of this strategy in recent organic semiconductor materials, small molecules and polymers, is highlighted, with analysis of X-ray crystal structures and comparisons with model systems used to determine the influence of these non-covalent short contacts. The case is made that the wide range of effective heteroatom interactions and the high performance that has been achieved in devices from organic solar cells to transistors is testament to the seeds sown by the synthetic metals research community.

4.
Beilstein J Org Chem ; 18: 944-955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965856

RESUMO

A novel π-conjugated molecule, EtH-T-DI-DTT is reported, which is fused, rigid, and planar, featuring the electron-rich dithieno[3,2-b:2',3'-d]thiophene (DTT) unit in the core of the structure. Adjacent to the electron-donating DTT core, there are indenone units with electron-withdrawing keto groups. To enable solubility in common organic solvents, the fused system is flanked by ethylhexylthiophene groups. The material is a dark, amorphous solid with an onset of absorption at 638 nm in CH2Cl2 solution, which corresponds to an optical gap of 1.94 eV. In films, the absorption onset wavelength is at 701 nm, which corresponds to 1.77 eV. An ionisation energy of 5.5 eV and an electron affinity of 3.3 eV were estimated by cyclic voltammetry measurements. We have applied this new molecule in organic field effect transistors. The material exhibited a p-type mobility up to 1.33 × 10-4 cm2 V-1 s-1.

5.
RSC Adv ; 11(11): 6131-6145, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35423161

RESUMO

Dihalogens readily interact with trimethylamine-N-oxide under ambient conditions. Accordingly, herein, stable 1 : 1 adducts were obtained in the case of iodine chloride and iodine bromide. The crystal and molecular structure of the trimethylamine-N-oxide-iodine chloride adduct was solved. Furthermore, the geometry and electronic structure of the trimethylamine-N-oxide-dihalogen complexes were studied computationally. Only molecular ensembles were found in the global minimum for the 1 : 1 stoichiometry. The O⋯X-Y halogen bond is the main factor for the thermodynamic stability of these complexes. Arguments for electrostatic interactions as the driving force for this noncovalent interaction were discussed. Also, the equilibrium structures are additionally stabilised by weak C-H⋯X hydrogen bonds. Consequently, formally monodentate ligands are bound in a polycentric manner.

6.
Acc Chem Res ; 52(6): 1665-1674, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117341

RESUMO

One of the most desirable and advantageous attributes of organic materials chemistry is the ability to tune the molecular structure to achieve targeted physical properties. This can be performed to achieve specific values for the ionization potential or electron affinity of the material, the absorption and emission characteristics, charge transport properties, phase behavior, solubility, processability, and many other properties, which in turn can help push the limits of performance in organic semiconductor devices. A striking example is the ability to make subtle structural changes to a conjugated macromolecule to vary the absorption and emission properties of a generic chemical structure. In this Account, we demonstrate that target properties for specific photonic applications can be achieved from different types of semiconductor structures, namely, monodisperse star-shaped molecules, complex linear macromolecules, and conjugated polymers. The most appropriate material for any single application inevitably demands consideration of a trade-off of various properties; in this Account, we focus on applications such as organic lasers, electrogenerated chemiluminescence, hybrid light emitting diodes, and visible light communications. In terms of synthesis, atom and step economies are also important. The star-shaped structures consist of a core unit with 3 or 4 functional connection points, to which can be attached conjugated oligomers of varying length and composition. This strategy follows a convergent synthetic pathway and allows the isolation of target macromolecules in good yield, high purity, and absolute reproducibility. It is a versatile approach, providing a wide choice of constituent molecular units and therefore varying properties, while the products share many of the desirable attributes of polymers. Constructing linear conjugated macromolecules with multifunctionality can lead to complex synthetic routes and lower atom and step economies, inferior processability, and lower thermal or chemical stability, but these materials can be designed to provide a range of different targeted physical properties. Conventional conjugated polymers, as the third type of structure, often feature so-called "champion" properties. The synthetic challenge is mainly concerned with monomer synthesis, but the final polymerization sequence can be hard to control, leading to variable molecular weights and polydispersities and some degree of inconsistency in the properties of the same material between different synthetic batches. If a champion characteristic persists between samples, then the variation of other properties between batches can be tolerable, depending on the target application. In the case of polymers, we have chosen to study PPV-type polymers with bulky side groups that provide protection of their conjugated backbone from π-π stacking interactions. These polymers exhibit high photoluminescence quantum yields (PLQYs) in films and short radiative lifetimes and are an important benchmark to monodisperse star-shaped systems in terms of different absorption/emission regions. This Account therefore outlines the advantages and special features of monodisperse star-shaped macromolecules for photonic applications but also considers the two alternative classes of materials and highlights the pros and cons of each class of conjugated structure.

7.
Beilstein J Org Chem ; 14: 2186-2189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202470

RESUMO

A novel methodology towards fabrication of multilayer organic devices, employing electrochemical polymer growth to form PEDOT and PEDTT layers, is successfully demonstrated. Moreover, careful control of the electrochemical conditions allows the degree of doping to be effectively altered for one of the polymer layers. Raman spectroscopy confirmed the formation and doped states of the PEDOT/PEDTT bilayer. The electrochemical deposition of a bilayer containing a de-doped PEDTT layer on top of doped PEDOT is analogous to a solution-processed organic semiconductor layer deposited on top of a PEDOT:PSS layer without the acidic PSS polymer. However, the poor solubility of electrochemically deposited PEDTT (or other electropolymerised potential candidates) raises the possibility of depositing a subsequent layer via solution-processing.

8.
J Phys Chem A ; 120(24): 4179-90, 2016 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-27228362

RESUMO

The present work describes the structure and binding of adducts of N,N'-diacetylpiperazine with halogens and interhalogens based on combination of different experimental methods and quantum chemical calculations. On the basis of conductometric and spectro-photometric experimental results, behavior of complexes in the acetonitrile solution was described. The iodine adduct with N,N'-diacetylpiperazine fully degrades into components. Adducts of interhalogens I-X (X = Cl or Br) with N,N'-diacetylpiperazine in acetonitrile partially dissociate to anionic [X-I-X](-) and cationic species. In the solid state, molecules are connected via C═O···I, C-H···I, and Cl···Cl attractive interactions. N,N'-diacetylpiperazine···dihalogen complex is stabilized by simultaneous C═O···I and C-H···I interactions. Such binding mode allows to explain the problems of the direct halogenation of acetyl-containing compounds with molecular halogens as reagents. We believe that the observed binding pattern can be used as prototypical for future design of halogeno complexes.

9.
Chem Commun (Camb) ; 52(9): 1919-22, 2016 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-26678932

RESUMO

Chirality induction into a uniform, star-shaped fluorene oligomer with a central truxene moiety (T3) was achieved using circularly polarized light in the presence of achiral fluorene or phenanthrene. Induction into T3 alone was difficult, suggesting that close chain packing realized through interactions of T3 with small molecules plays a role in chirality induction.


Assuntos
Fluorenos/química , Luz , Dicroísmo Circular , Fenantrenos/química , Espectrofotometria Ultravioleta , Estereoisomerismo
10.
Beilstein J Org Chem ; 11: 1749-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664595

RESUMO

The aim of this review is to give an update on current progress in the synthesis, properties and applications of thiophene-based conjugated systems bearing tetrathiafulvalene (TTF) units. We focus mostly on the synthesis of poly- and oligothiophenes with TTF moieties fused to the thiophene units of the conjugated backbone either directly or via a dithiin ring. The electrochemical behaviour of these materials and structure-property relationships are discussed. The study is directed towards the development of a new type of organic semiconductors based on these hybrid materials for application in organic field effect transistors and solar cells.

11.
Beilstein J Org Chem ; 11: 1148-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26199671

RESUMO

Two novel tetrathiafulvalene (TTF) containing compounds 1 and 2 have been synthesised via a four-fold Stille coupling between a tetrabromo-dithienoTTF 5 and stannylated thiophene 6 or thiazole 4. The optical and electrochemical properties of compounds 1 and 2 have been measured by UV-vis spectroscopy and cyclic voltammetry and the results compared with density functional theory (DFT) calculations to confirm the observed properties. Organic field effect transistor (OFET) devices fabricated from 1 and 2 demonstrated that the substitution of thiophene units for thiazoles was found to increase the observed charge transport, which is attributed to induced planarity through S-N interactions of adjacent thiazole nitrogen atoms and TTF sulfur atoms and better packing in the bulk.

12.
ACS Appl Mater Interfaces ; 7(51): 27999-8005, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25832195

RESUMO

Following an approach developed in our group to incorporate tetrathiafulvalene (TTF) units into conjugated polymeric systems, we have studied a low band gap polymer incorporating TTF as a donor component. This polymer is based on a fused thieno-TTF unit that enables the direct incorporation of the TTF unit into the polymer, and a second comonomer based on the diketopyrrolopyrrole (DPP) molecule. These units represent a donor-acceptor copolymer system, p(DPP-TTF), showing strong absorption in the UV-visible region of the spectrum. An optimized p(DPP-TTF) polymer organic field effect transistor and a single material organic solar cell device showed excellent performance with a hole mobility of up to 5.3 × 10(-2) cm(2)/(V s) and a power conversion efficiency (PCE) of 0.3%, respectively. Bulk heterojunction organic photovoltaic devices of p(DPP-TTF) blended with phenyl-C71-butyric acid methyl ester (PC71BM) exhibited a PCE of 1.8%.

13.
Faraday Discuss ; 174: 357-67, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25268762

RESUMO

Electrochemiluminescence (ECL) uses redox reactions to generate light at an electrode surface, and is gaining increasing attention for biosensor development due to its high sensitivity and excellent signal-to-noise ratio. ECL studies of monodisperse oligofluorene-truxenes (T4 series) have been reported previously, showing the production of stable radical cations and radical anions, generating blue ECL. The compound in this study differs from the original structures, in that there are 2,1,3-benzothiadazole (BT) units inserted between the first and second fluorene units of the quarterfluorenyl arms. It was therefore anticipated that the incorporation of these highly luminescent and ECL-active compounds into sensor development would lead to significant decreases in detection limits. In this contribution, we report on the impact of incorporating these novel complexes into sensor devices on the ECL efficiency, as well as the ability of these to improve the detection sensitivity and decrease the limit of detection using the reagent-free detection of model analytes. The real world impact of these compounds is elucidated through the comparison with more standard ECL materials such as ruthenium-based compounds. The potential for multiple applications is to be examined within this contribution.

14.
Faraday Discuss ; 174: 369-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25254510

RESUMO

Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.


Assuntos
Técnicas Biossensoriais/instrumentação , Lasers , Compostos Orgânicos/química , Semicondutores , Coloides/química , Substâncias Luminescentes/química , Estrutura Molecular , Sondas de Ácido Nucleico/química , Pontos Quânticos
15.
Langmuir ; 30(41): 12429-37, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25259412

RESUMO

We demonstrate the nonaqueous self-assembly of a low-molecular-mass organic gelator based on an electroactive p-type tetrathiafulvalene (TTF)-dipeptide bioconjugate. We show that a TTF moiety appended with diphenylalanine amide derivative (TTF-FF-NH2) self-assembles into one-dimensional nanofibers that further lead to the formation of self-supporting organogels in chloroform and ethyl acetate. Upon doping of the gels with electron acceptors (TCNQ/iodine vapor), stable two-component charge transfer gels are produced in chloroform and ethyl acetate. These gels are characterized by various spectroscopy (UV-vis-NIR, FTIR, and CD), microscopy (AFM and TEM), rheology, and cyclic voltammetry techniques. Furthermore, conductivity measurements performed on TTF-FF-NH2 xerogel nanofiber networks formed between gold electrodes on a glass surface indicate that these nanofibers show a remarkable enhancement in the conductivity after doping with TCNQ.


Assuntos
Dipeptídeos/química , Géis/síntese química , Compostos Heterocíclicos/química , Nanofibras/química , Dipeptídeos/síntese química , Géis/química , Estrutura Molecular
16.
Biosens Bioelectron ; 54: 679-86, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24355421

RESUMO

The first example of an all-organic oligofluorene truxene based distributed feedback laser for the detection of a specific protein-small molecule interaction is reported. The protein avidin was detected down to 1 µg mL(-1) using our biotin-labelled biosensor platform. This interaction was both selective and reversible when biotin was replaced with desthiobiotin. Avidin detection was not perturbed by Bovine Serum Albumin up to 50,000 µg mL(-1). Our biosensor offers a new detection platform that is both highly sensitive, modular and potentially re-usable.


Assuntos
Avidina/análise , Avidina/metabolismo , Técnicas Biossensoriais/instrumentação , Biotina/metabolismo , Fluorenos/química , Lasers , Animais , Biotina/análogos & derivados , Biotinilação , Bovinos , Desenho de Equipamento , Semicondutores , Sensibilidade e Especificidade , Soroalbumina Bovina/metabolismo
17.
Beilstein J Org Chem ; 10: 2704-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25550734

RESUMO

Star-shaped conjugated systems with varying oligofluorene arm length and substitution patterns of the central BODIPY core have been synthesised, leading to two families of compounds, T-B1-T-B4 and Y-B1-Y-B4, with T- and Y-shaped motifs, respectively. Thermal stability, cyclic voltammetry, absorption and photoluminescence spectroscopy of each member of these two families were studied in order to determine their suitability as emissive materials in photonic applications.

18.
Beilstein J Org Chem ; 9: 1243-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23843920

RESUMO

Oligofluorene-functionalised truxenes containing perfluorohexylthiophene units at the terminal positions on the arms were synthesised, and their optical and electrochemical properties were investigated to determine the effect that the perfluorohexylthiophene unit has on the HOMO and LUMO properties of the oligomers. By synthesising a molecule with longer oligofluorene arms the effects of the perfluorohexylthiophene unit on larger oligomers was explored. The effect of steric hindrance from the perfluorohexyl chain was also evaluated by altering the position of the chain on the thiophene moiety.

19.
Opt Express ; 21(12): 14362-7, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787624

RESUMO

Organic semiconductor lasers were fabricated by UV-nanoimprint lithography with thresholds as low as 57 W/cm(2) under 4 ns pulsed operation. The nanoimprinted lasers employed mixed-order distributed feedback resonators, with second-order gratings surrounded by first-order gratings, combined with a light-emitting conjugated polymer. They were pumped by InGaN LEDs to produce green-emitting lasers, with thresholds of 208 W/cm(2) (102 nJ/pulse). These hybrid lasers incorporate a scalable UV-nanoimprint lithography process, compatible with high-performance LEDs, therefore we have demonstrated a coherent, compact, low-cost light source.


Assuntos
Lasers , Impressão Molecular/métodos , Nanotecnologia/instrumentação , Polímeros/química , Transdutores , Transferência de Energia , Retroalimentação , Polímeros/efeitos da radiação
20.
Adv Mater ; 25(20): 2826-30, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23580437

RESUMO

An organic semiconductor laser, simply fabricated by UV-nanoimprint lithography (UV-NIL), that is pumped with a pulsed InGaN LED is demonstrated. Molecular weight optimization of the polymer gain medium on a nanoimprinted polymer distributed feedback resonator enables the lowest reported UV-NIL laser threshold density of 770 W cm(-2) , establishing the potential for scalable organic laser fabrication compatible with mass-produced LEDs.


Assuntos
Lasers de Estado Sólido , Iluminação/instrumentação , Impressão Molecular/instrumentação , Nanopartículas/química , Nanotecnologia/instrumentação , Compostos Orgânicos/química , Semicondutores , Desenho de Equipamento , Análise de Falha de Equipamento , Nanopartículas/efeitos da radiação , Compostos Orgânicos/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...