Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(3): e1011207, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996029

RESUMO

Transmissions of simian viruses to humans has originated the different groups of HIV-1. We recently identified a functional motif (CLA), in the C-terminal domain of the integrase, essential for integration in HIV-1 group M. Here, we found that the motif is instead dispensable in group O isolates, because of the presence, in the N-terminal domain of HIV-1 O of a specific sequence, Q7G27P41H44, that we define as the NOG motif. Alterations of reverse transcription and of 3' processing observed by mutating the CLA motif of IN M are fully rescued to wt levels by inserting the sequence of the NOG motif in the N-ter of the protein. These results indicate that the two motifs (CLA and NOG) functionally complement each other and a working model accounting for these observations is proposed. The establishment of these two alternative motifs seems to be due to the different phylogenetic origin and history of these two groups. Indeed, the NOG motif is already present in the ancestor of group O (SIVgor) while it is absent from SIVcpzPtt, the ancestor of group M. The CLA motif, instead, seems to have emerged after SIVcpzPtt has been transferred to humans, since no conservation is found at the same positions in these simian viruses. These results show the existence of two-group specific motifs in HIV-1 M and O integrases. In each group, only one of the motifs is functional, potentially leading the other motif to diverge from its original function and, in an evolutionary perspective, assist other functions of the protein, further increasing HIV genetic diversity.


Assuntos
Integrase de HIV , HIV-1 , Vírus da Imunodeficiência Símia , Humanos , Filogenia , HIV-1/genética , Vírus da Imunodeficiência Símia/genética , Integrase de HIV/genética , Integrases
2.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727879

RESUMO

Using coevolution network interference based on comparison of two phylogenetically distantly related isolates, one from the main group M and the other from the minor group O of HIV-1, we identify, in the C-terminal domain (CTD) of integrase, a new functional motif constituted by four noncontiguous amino acids (N222K240N254K273). Mutating the lysines abolishes integration through decreased 3' processing and inefficient nuclear import of reverse-transcribed genomes. Solution of the crystal structures of wild-type (wt) and mutated CTDs shows that the motif generates a positive surface potential that is important for integration. The number of charges in the motif appears more crucial than their position within the motif. Indeed, the positions of the K's could be permutated or additional K's could be inserted in the motif, generally without affecting integration per se Despite this potential genetic flexibility, the NKNK arrangement is strictly conserved in natural sequences, indicative of an effective purifying selection exerted at steps other than integration. Accordingly, reverse transcription was reduced even in the mutants that retained wt integration levels, indicating that specifically the wt sequence is optimal for carrying out the multiple functions that integrase exerts. We propose that the existence of several amino acid arrangements within the motif, with comparable efficiencies of integration per se, might have constituted an asset for the acquisition of additional functions during viral evolution.IMPORTANCE Intensive studies of HIV-1 have revealed its extraordinary ability to adapt to environmental and immunological challenges, an ability that is also at the basis of antiviral treatment escape. Here, by deconvoluting the different roles of the viral integrase in the various steps of the infectious cycle, we report how the existence of alternative equally efficient structural arrangements for carrying out one function opens up the possibility of adapting to the optimization of further functionalities exerted by the same protein. Such a property provides an asset to increase the efficiency of the infectious process. On the other hand, though, the identification of this new motif provides a potential target for interfering simultaneously with multiple functions of the protein.


Assuntos
Integrase de HIV/química , HIV-1/química , Motivos de Aminoácidos , Linhagem Celular Tumoral , Células HEK293 , Integrase de HIV/genética , HIV-1/genética , Humanos , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...