Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(15): 7822-7830, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30932097

RESUMO

Previous studies of electronic transport in molybdenum disulfide (MoS2) are restricted to the first order approximation of the Hamiltonian. In this paper, to obtain more exact results, we firstly present an analytical solution for the Hamiltonian of MoS2 when terms up to the second order (quadratic k-dependent) of the Hamiltonian are taken into account. Our analytical solution is easily applicable to study the transport properties of any single and multi-junctions of MoS2. Then, we propose a device composed of two ferromagnetic barriers with anti-parallel exchange fields and we show that this device has interesting properties such as spin and valley filtering with perfect spin and valley polarizations. Using this device, we can easily switch both spin and valley polarizations to their opposite polarizations only by using electric voltage, which is of fundamental importance in quantum computation and the next generation of logic devices.

2.
J Phys Condens Matter ; 31(30): 305304, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30889557

RESUMO

Although the existence of four valley degrees of freedom in the (0 0 1) surface of IV-VI semiconductor topological crystalline insulators (TCIs) provides the opportunity to multiply the valleytronic functionality, it makes the generation of highly polarized valley currents less plausible. We investigate quantum adiabatic valley pumping in (0 0 1) surface of these TCIs and show that applying shear strains and exchange field gives the possibility of control and manipulation of the valley resolved currents with high polarizations. Interchange of polarizations, simply by turning the tensile strain into compressive mode and vice versa, highlights the potential application for valleytronic switching process. Furthermore, since the surface states are robust against disorders, we can increase the lengths of driving regions and pump significantly larger currents without breaking the coherency of the quantum transport regime.

3.
Phys Chem Chem Phys ; 19(21): 14170-14177, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28530291

RESUMO

Generation of large currents, versatile functionality, and simple structures are of fundamental importance in the development of adiabatic quantum pump devices with nanoscale dimensions. In the present study, we propose an adiabatic quantum pump with a simple structure based on molybdenum disulfide, MoS2, to generate large spin and valley resolved currents. We show that pure and fully polarized spin and valley currents can be easily generated by employing two potential gates and using an exchange magnetic field. Unlike graphene and silicene, in order to induce a valley resolved current in MoS2, one does not need to induce strain and apply an electric field. The spin and valley resolved currents are completely coupled together, so that the spin up (down) current is exactly equal to the valley K(K') current. Hence, we can detect the valley resolved current by utilizing more straightforward and simple methods used for the detection of spin resolved currents. The other prominent feature of this proposed pump is its large current, which is two and three orders of magnitude larger than the maximum current of similar pump structures based on silicene and graphene, respectively. The results of this study are promising for the fabrication of quantum pumps with large spin and valley resolved currents, which opens up the possibility of further development of spintronics and valleytronics in 2D nanostructures.

4.
Nanotechnology ; 27(49): 495202, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27827345

RESUMO

We propose an efficient scheme for the generation and control of both pure and fully polarized valley currents in a silicene-based junction, using adiabatic quantum pumping. The pure and fully polarized valley currents are induced using ferromagnetic proximity and the application of a perpendicular electric field. We show that the valley polarized current can easily be switched from valley K to valley [Formula: see text] and vice versa, simply by reversing the direction of the electric field. Thus, the valley current is controllable electrically. Compared to the methods proposed for generation of valley current by quantum pumping in graphene, which are based on inducing strain on its sheet, our method is very simple and can be easily utilized in practical applications. Also, we show that the magnitude of pumped current in a silicene-based junction is roughly one order of magnitude greater than that of graphene. In addition to valley-related currents, our pump scheme can be used on its own to generate pure and fully polarized spin currents. A comparison between weak and strong adiabatic regimes is given, and the effects of some structural parameters that can significantly affect the pumping currents and polarizations are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...