Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(23): e202300943, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893078

RESUMO

Combined synchrotron X-ray nanotomography imaging, cryogenic electron microscopy (cryo-EM) and modeling elucidate how potassium (K) metal-support energetics influence electrodeposit microstructure. Three model supports are employed: O-functionalized carbon cloth (potassiophilic, fully-wetted), non-functionalized cloth and Cu foil (potassiophobic, nonwetted). Nanotomography and focused ion beam (cryo-FIB) cross-sections yield complementary three-dimensional (3D) maps of cycled electrodeposits. Electrodeposit on potassiophobic support is a triphasic sponge, with fibrous dendrites covered by solid electrolyte interphase (SEI) and interspersed with nanopores (sub-10 nm to 100 nm scale). Lage cracks and voids are also a key feature. On potassiophilic support, the deposit is dense and pore-free, with uniform surface and SEI morphology. Mesoscale modeling captures the critical role of substrate-metal interaction on K metal film nucleation and growth, as well as the associated stress state.

2.
Nat Mater ; 21(9): 1050-1056, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35655030

RESUMO

Solid-state Li-ion batteries with lithium anodes offer higher energy densities and are safer than conventional liquid electrolyte-based Li-ion batteries. However, the growth of lithium dendrites across the solid-state electrolyte layer leads to the premature shorting of cells and limits their practical viability. Here, using solid-state Li half-cells with metallic interlayers between a garnet-based lithium-ion conductor and lithium, we show that interfacial void growth precedes dendrite nucleation and growth. Specifically, void growth was observed at a current density of around two-thirds of the critical current density for dendrite growth. Computational calculations reveal that interlayer materials with higher critical current densities for dendrite growth also have the largest thermodynamic and kinetic barriers for lithium vacancy accumulation at their interfaces with lithium. Our results suggest that interfacial modification with suitable metallic interlayers decreases the tendency for void growth and improves dendrite growth tolerance in solid-state electrolytes, even in the absence of high stack pressures.


Assuntos
Eletrólitos , Lítio , Dendritos , Fontes de Energia Elétrica , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...