Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 88(5): 1074-84, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24661661

RESUMO

OBJECTIVE: To report late toxicity outcomes from a randomized trial comparing conventional and hypofractionated prostate radiation therapy and to identify dosimetric and clinical parameters associated with late toxicity after hypofractionated treatment. METHODS AND MATERIALS: Men with localized prostate cancer were enrolled in a trial that randomized men to either conventionally fractionated intensity modulated radiation therapy (CIMRT, 75.6 Gy in 1.8-Gy fractions) or to dose-escalated hypofractionated IMRT (HIMRT, 72 Gy in 2.4-Gy fractions). Late (≥90 days after completion of radiation therapy) genitourinary (GU) and gastrointestinal (GI) toxicity were prospectively evaluated and scored according to modified Radiation Therapy Oncology Group criteria. RESULTS: 101 men received CIMRT and 102 men received HIMRT. The median age was 68, and the median follow-up time was 6.0 years. Twenty-eight percent had low-risk, 71% had intermediate-risk, and 1% had high-risk disease. There was no difference in late GU toxicity in men treated with CIMRT and HIMRT. The actuarial 5-year grade ≥2 GU toxicity was 16.5% after CIMRT and 15.8% after HIMRT (P=.97). There was a nonsignificant numeric increase in late GI toxicity in men treated with HIMRT compared with men treated with CIMRT. The actuarial 5-year grade ≥2 GI toxicity was 5.1% after CIMRT and 10.0% after HIMRT (P=.11). In men receiving HIMRT, the proportion of rectum receiving 36.9 Gy, 46.2 Gy, 64.6 Gy, and 73.9 Gy was associated with the development of late GI toxicity (P<.05). The 5-year actuarial grade ≥2 GI toxicity was 27.3% in men with R64.6Gy ≥ 20% but only 6.0% in men with R64.6Gy < 20% (P=.016). CONCLUSIONS: Dose-escalated IMRT using a moderate hypofractionation regimen (72 Gy in 2.4-Gy fractions) can be delivered safely with limited grade 2 or 3 late toxicity. Minimizing the proportion of rectum that receives moderate and high dose decreases the risk of late rectal toxicity after this hypofractionation regimen.


Assuntos
Fracionamento da Dose de Radiação , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Relação Dose-Resposta à Radiação , Trato Gastrointestinal/efeitos da radiação , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Prospectivos , Próstata/efeitos da radiação , Doses de Radiação , Lesões por Radiação/etiologia , Radiometria , Reto/efeitos da radiação , Risco , Bexiga Urinária/efeitos da radiação
2.
J Natl Compr Canc Netw ; 11(4): 414-21, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23584344

RESUMO

Definitive radiation therapy is the preferred treatment for many men with prostate cancer. Several modalities are used for radiation treatment delivery, including 3-dimensional conformal radiation therapy, intensity-modulated radiation therapy, proton beam therapy, stereotactic body radiation therapy, high-dose-rate prostate brachytherapy, and low-dose-rate prostate brachytherapy. This article reviews technologic advances that have enhanced radiation delivery and describes contemporary radiation treatment techniques for prostate cancer.


Assuntos
Adenocarcinoma/radioterapia , Neoplasias da Próstata/radioterapia , Radioterapia/métodos , Braquiterapia/métodos , Fracionamento da Dose de Radiação , Humanos , Masculino , Modelos Biológicos
3.
Med Dosim ; 38(3): 251-4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23540491

RESUMO

Weight loss or gain during the course of radiation therapy for prostate cancer can alter the planned dose to the target volumes and critical organs. Typically, source-to-surface distance (SSD) measurements are documented by therapists on a weekly basis to ensure that patients' exterior surface and isocenter-to-skin surface distances remain stable. The radiation oncology team then determines whether the patient has undergone a physical change sufficient to require a new treatment plan. The effect of weight change (SSD increase or decrease) on intensity-modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) dosimetry is not well known, and it is unclear when rescanning or replanning is needed. The purpose of this study was to determine the effects of weight change (SSD increase or decrease) on IMRT or VMAT dose delivery in patients with prostate cancer and to determine the SSD change threshold for replanning. Whether IMRT or VMAT provides better dose stability under weight change conditions was also determined. We generated clinical IMRT and VMAT prostate and seminal vesicle treatment plans for varying SSDs for 10 randomly selected patients with prostate cancer. The differences due to SSD change were quantified by a specific dose change for a specified volume of interest. The target mean dose, decreased or increased by 2.9% per 1-cm SSD decrease or increase in IMRT and by 3.6% in VMAT. If the SSD deviation is more than 1cm, the radiation oncology team should determine whether to continue treatment without modifications, to adjust monitor units, or to resimulate and replan.


Assuntos
Peso Corporal/efeitos da radiação , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada , Humanos , Masculino , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Aumento de Peso , Redução de Peso
4.
Med Dosim ; 37(2): 208-13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21978532

RESUMO

The treatment of locoregionally recurrent breast cancer in patients who have previously undergone radiation therapy is challenging. Special techniques are often required that both eradicate the disease and minimize the risks of retreatment. We report the case of a patient with an early-stage left breast cancer who developed inflammatory-type recurrence requiring re-irradiation of the chest wall using bolus electron conformal therapy with image-guided treatment delivery. The patient was a 51-year-old woman who had undergone lumpectomy, axillary lymph node dissection, and adjuvant whole-breast radiation therapy for a stage I left breast cancer in June 1998. In March 2009, she presented at our institution with biopsy-proven recurrent inflammatory carcinoma and was aggressively treated with multi-agent chemotherapy followed by mastectomy that left a positive surgical margin. Given the patient's prior irradiation and irregular chest wall anatomy, bolus electron conformal therapy was used to treat her chest wall and draining lymphatics while sparing the underlying soft tissue. The patient still had no evidence of disease 21 months after treatment. Our results indicate that bolus electron conformal therapy is an accessible, effective radiation treatment approach for recurrent breast cancer in patients with irregular chest wall anatomy as a result of surgery. This approach may complement standard techniques used to reduce locoregional recurrence in the postmastectomy setting.


Assuntos
Carcinoma Ductal de Mama/radioterapia , Neoplasias Inflamatórias Mamárias/radioterapia , Recidiva Local de Neoplasia/radioterapia , Radioterapia Conformacional/métodos , Carcinoma Ductal de Mama/cirurgia , Feminino , Humanos , Neoplasias Inflamatórias Mamárias/cirurgia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/cirurgia
5.
Pract Radiat Oncol ; 2(3): 201-209, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24674124

RESUMO

PURPOSE: The Radiation Therapy Oncology Group (RTOG) has published consensus guidelines for contouring relevant anatomy for postmastectomy radiation therapy (RT). How these contours relate to current treatment practices is unknown. We analyzed the dose-volume histograms (DVHs) for these contours using current clinical practice at University of Texas MD Anderson Cancer Center and compared them with the proposed treatment plans to treat RTOG-defined targets to full dose. METHODS AND MATERIALS: We retrospectively analyzed treatment plans for 20 consecutive women treated with postmastectomy RT for which the treatment targets were the chest wall (CW), level III axilla (Ax3), supraclavicular (SCV), and internal mammary (IM) nodes. The RTOG consensus definitions were used to contour the following anatomic structures: CW; level I, II, and III axillary nodes (Ax1, Ax2, Ax3); SCV; IM; and heart (H). DVHs for these contours and the ipsilateral lung were generated from clinically designed treatment that had actually been delivered to each patient. For comparison regarding dose to normal tissue, new treatment plans were generated with the goal of covering 95% of the anatomic contours to 45 Gy. RESULTS: The prescribed dose was 50 Gy in each case. The mean percent of volumes that received 45 Gy (V45) for the RTOG guideline-based contours were CW 74%, Ax1 84%, Ax2 88%, Ax3 96%, SCV 84%, and IM 80%. Mean heart V10 values were 11% for treatment of left-sided tumors and 6% for right-sided tumors. Mean ipsilateral lung V20 values were 28% for left-sided tumors and 34% for right-sided tumors. For the contour-based plans, mean V45 values were CW 94%, Ax1 95%, Ax2 97%, Ax3 98%, SCV 98%, and IM 85%. Mean heart V10 values were 14% for treatment of left-sided tumors and 12% for right-sided tumors. Mean ipsilateral lung V20 values were 32% for left-sided tumors and 45% for right-sided tumors. CONCLUSIONS: Clinically derived treatment plans, which have proven efficacy and are the current standard, cover 74% to 96% of the anatomy-based RTOG consensus volumes to the prescription dose. This discrepancy should be considered if treatment planning protocol guidelines are designed to incorporate these new definitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...