Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 119: 103760, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048655

RESUMO

Skeletal muscle generates heat via contraction-dependent (shivering) and independent (nonshivering) mechanisms. While this thermogenic capacity of skeletal muscle undoubtedly contributes to the body temperature homeostasis of animals and impacts various cellular functions, the intracellular temperature and its dynamics in skeletal muscle in vivo remain elusive. We aimed to determine the intracellular temperature and its changes within skeletal muscle in vivo during contraction and following relaxation. In addition, we tested the hypothesis that sarcoplasmic reticulum Ca2+ ATPase (SERCA) generates heat and increases the myocyte temperature during a transitory Ca2+-induced contraction-relaxation cycle. The intact spinotrapezius muscle of anesthetized adult male Wistar rats (n = 18) was exteriorized and loaded with the fluorescent probe Cellular Thermoprobe for Fluorescence Ratio (49.3 µM) by microinjection over 1 s. The fluorescence ratio (i.e., 580 nm/515 nm) was measured in vivo during 1) temperature increases induced by means of an external heater, and 2) Ca2+ injection (3.9 nL, 2.0 mM). The fluorescence ratio increased as a linear function of muscle surface temperature from 25 °C to 40 °C (r2 = 0.97, P < 0.01). Ca2+ injection (3.9 nL, 2.0 mM) significantly increased myocyte intracellular temperature: An effect that was suppressed by SERCA inhibition with cyclopiazonic acid (CPA, Ca2+: 38.3 ± 1.4 °C vs Ca2++CPA: 28.3 ± 2.8 °C, P < 0.01 at 1 min following injection). While muscle shortening occurred immediately after the Ca2+ injection, the increased muscle temperature was maintained during the relaxation phase. In this investigation, we demonstrated a novel model for measuring the intracellular temperature of skeletal muscle in vivo and further that heat generation occurs concomitant principally with SERCA functioning and muscle relaxation.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Ratos , Masculino , Animais , Ratos Wistar , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/farmacologia , Termogênese/fisiologia , Cálcio
2.
Am J Physiol Regul Integr Comp Physiol ; 326(1): R43-R52, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37899753

RESUMO

Hydrogen peroxide (H2O2) and calcium ions (Ca2+) are functional regulators of skeletal muscle contraction and metabolism. Although H2O2 is one of the activators of the type-1 ryanodine receptor (RyR1) in the Ca2+ release channel, the interdependence between H2O2 and Ca2+ dynamics remains unclear. This study tested the following hypotheses using an in vivo model of mouse tibialis anterior (TA) skeletal muscle. 1) Under resting conditions, elevated cytosolic H2O2 concentration ([H2O2]cyto) leads to a concentration-dependent increase in cytosolic Ca2+ concentration ([Ca2+]cyto) through its effect on RyR1; and 2) in hypoxia (cardiac arrest) and muscle contractions (electrical stimulation), increased [H2O2]cyto induces Ca2+ accumulation. Cytosolic H2O2 (HyPer7) and Ca2+ (Fura-2) dynamics were resolved by TA bioimaging in young C57BL/6J male mice under four conditions: 1) elevated exogenous H2O2; 2) cardiac arrest; 3) twitch (1 Hz, 60 s) contractions; and 4) tetanic (30 s) contractions. Exogenous H2O2 (0.1-100 mM) induced a concentration-dependent increase in [H2O2]cyto (+55% at 0.1 mM; +280% at 100 mM) and an increase in [Ca2+]cyto (+3% at 1.0 mM; +8% at 10 mM). This increase in [Ca2+]cyto was inhibited by pharmacological inhibition of RyR1 by dantrolene. Cardiac arrest-induced hypoxia increased [H2O2]cyto (+33%) and [Ca2+]cyto (+20%) 50 min postcardiac arrest. Compared with the exogenous 1.0 mM H2O2 condition, [H2O2]cyto after tetanic muscle contractions rose less than one-tenth as much, whereas [Ca2+]cyto was 4.7-fold higher. In conclusion, substantial increases in [H2O2]cyto levels evoke only modest Ca2+ accumulation via their effect on the sarcoplasmic reticulum RyR1. On the other hand, contrary to hypoxia secondary to cardiac arrest, increases in [H2O2]cyto from muscle contractions are small, indicating that H2O2 generation is unlikely to be a primary factor driving the significant Ca2+ accumulation after, especially tetanic, muscle contractions.NEW & NOTEWORTHY We developed an in vivo mouse myocyte H2O2 imaging model during exogenous H2O2 loading, ischemic hypoxia induced by cardiac arrest, and muscle contractions. In this study, the interrelationship between cytosolic H2O2 levels and Ca2+ homeostasis during muscle contraction and hypoxic conditions was revealed. These results contribute to the elucidation of the mechanisms of muscle fatigue and exercise adaptation.


Assuntos
Parada Cardíaca , Peróxido de Hidrogênio , Masculino , Animais , Camundongos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Contração Muscular/fisiologia , Retículo Sarcoplasmático/metabolismo , Homeostase , Hipóxia/metabolismo , Parada Cardíaca/metabolismo , Cálcio/metabolismo , Fibras Musculares Esqueléticas
3.
Physiol Rep ; 11(23): e15855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38086691

RESUMO

TRPM8 agonist has been reported to promote osteogenic differentiation of mesenchymal stem cells (MSCs), therefore we evaluated whether cooling-induced activation of TRPM8 promotes myogenic differentiation of MSCs. We used 5-azacytidine as a myogenic differentiation inducer in murine bone marrow-derived MSCs. Addition of menthol, a TRPM8 agonist, to the differentiation induction medium significantly, increased the percentage of MyoD-positive cells, a specific marker of myogenic differentiation. We performed intracellular Ca2+ imaging experiments using fura-2 to confirm TRPM8 activation by cooling stimulation. The results confirmed that intracellular Ca2+ concentration ([Ca2+ ]i) increases due to TRPM8 activation, and TRPM8 antagonist inhibits increase in [Ca2+ ]i at medium temperatures below 19°C. We also examined the effect of cooling exposure time on myogenic differentiation of MSCs using an external cooling stimulus set at 17°C. The results showed that 60 min of cooling had an acceleratory effect on differentiation (2.18 ± 0.27 times). We observed that the TRPM8 antagonist counteracted the differentiation-promoting effect of the cooling. These results suggest that TRPM8 might modulate the multiple differentiation pathways of MSCs, and that cooling is an effective way of activating TRPM8, which regulates MSCs differentiation in vitro.


Assuntos
Células-Tronco Mesenquimais , Canais de Cátion TRPM , Camundongos , Animais , Osteogênese , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Temperatura Baixa , Azacitidina/metabolismo , Azacitidina/farmacologia , Canais de Cátion TRPM/metabolismo
4.
Physiol Rep ; 11(21): e15867, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37962014

RESUMO

This study aimed to determine effects of cooling on contraction-induced peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and vascular endothelial growth factor (VEGF) gene expression, phosphorylations of its related protein kinases, and metabolic responses. Male rats were separated into two groups; room temperature (RT) or ice-treated (COLD) on the right tibialis anterior (TA). The TA was contracted isometrically using nerve electrical stimulation (1-s stimulation × 30 contractions, with 1-s intervals, for 10 sets with 1-min intervals). The TA was treated before the contraction and during 1-min intervals with an ice pack for the COLD group and a water pack at RT for the RT group. The muscle temperature of the COLD group decreased to 19.42 ± 0.44°C (p < 0.0001, -36.4%) compared with the RT group after the experimental protocol. An increase in mRNA expression level of PGC-1α, not VEGF, after muscle contractions was significantly lower in the COLD group than in the RT group (p < 0.0001, -63.0%). An increase in phosphorylated AMP-activated kinase (AMPK) (p = 0.0037, -28.8%) and a decrease in glycogen concentration (p = 0.0231, +106.3%) after muscle contraction were also significantly inhibited by cooling. Collectively, muscle cooling attenuated the post-contraction increases in PGC-1α mRNA expression coinciding with decreases in AMPK phosphorylation and glycogen degradation.


Assuntos
Proteínas Quinases Ativadas por AMP , Fator A de Crescimento do Endotélio Vascular , Animais , Masculino , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio/metabolismo , Gelo , Contração Muscular , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Geriatr Gerontol Int ; 23(12): 958-964, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37968438

RESUMO

AIM: Cytidine monophosphate-N-acetylneuraminic acid (Neu5Ac) hydroxylase (Cmah) is an enzyme, which converts Neu5Ac to the sialic acid Neu5Gc. Neu5Gc is thought to increase inflammatory cytokines, which are, in part, produced in senescent cells of adipose tissues. Cellular senescence in adipose tissues induces whole-body aging and impaired glucose metabolism. Therefore, we hypothesized that Cmah deficiency would prevent cellular senescence in adipose tissues and impaired glucose metabolism. METHODS: Wild-type (WT) and Cmah knockout (KO) mice aged 24-25 months were used. Whole-body metabolism was assessed using a metabolic gas analysis system. We measured blood glucose and insulin concentrations after oral glucose administration. The size of the lipid droplets in the liver was quantified. Markers of cellular senescence and senescence-associated secretory phenotypes were measured in adipose tissues. RESULTS: Cmah KO had significantly increased VO2 and energy expenditure (P < 0.01). Unlike glucose, the insulin concentration after oral glucose administration was significantly lower in the Cmah KO group than in the WT group (P < 0.001). Lipid droplets in the liver were significantly lower in the Cmah KO group than in the WT group (P < 0.05). The markers of cellular senescence and senescence-associated secretory phenotypes in the adipose tissues were significantly lower in the Cmah KO group than in the WT group (P < 0.05). CONCLUSIONS: Cmah deficiency blunted cellular senescence in adipose tissues and improved whole-body glucose metabolism. These characteristics in aged Cmah KO mice might be associated with higher energy expenditure. Geriatr Gerontol Int 2023; 23: 958-964.


Assuntos
Insulinas , Ácido N-Acetilneuramínico , Animais , Camundongos , Senescência Celular , Glucose , Camundongos Knockout , Ácido N-Acetilneuramínico/metabolismo
6.
Front Physiol ; 14: 1265871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841318

RESUMO

Introduction: Environmental enrichment (EE) for rodents involves housing conditions that facilitate enhanced sensory, cognitive, and motor stimulation relative to standard housing conditions. A recent study suggested that EE induces muscle hypertrophy. However, it remains unclear whether muscle hypertrophy in EE is associated with voluntary physical activity, and the characteristics of muscle adaptation to EE remain unclarified. Therefore, this study investigated whether muscle adaptation to EE is associated with voluntary physical activity, and assessed the changes in the muscle fiber-type distribution and fiber-type-specific cross-sectional area in response to EE. Methods: Wistar rats (6 weeks of age) were randomly assigned to either the standard environment group (n = 10) or the EE group (n = 10). The voluntary physical activity of rats housed in EE conditions was measured using a recently developed three-axis accelerometer. After exposure to the standard or enriched environment for 30 days, the tibialis anterior, extensor digitorum longus, soleus, plantaris, and gastrocnemius muscles were removed and weighed. Immunohistochemistry analysis was performed on the surface (anterior) and deep (posterior) areas of the tibialis anterior and soleus muscles. Results and discussion: The EE group showed increased voluntary physical activity during the dark period compared with the standard environment group (p = 0.005). EE induced muscle mass gain in the soleus muscle (p = 0.002) and increased the slow-twitch muscle fiber cross-sectional area of the soleus muscle (p = 0.025). EE also increased the distribution of high-oxidative type IIa fibers of the surface area (p = 0.001) and type I fibers of the deep area (p = 0.037) of the tibialis anterior muscle. These findings suggest that EE is an effective approach to induce slow-twitch muscle fiber hypertrophy through increased daily voluntary physical activity.

7.
J Cell Physiol ; 238(9): 2103-2119, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37435895

RESUMO

Skeletal muscle maintenance depends largely on muscle stem cells (satellite cells) that supply myoblasts required for muscle regeneration and growth. The ubiquitin-proteasome system is the major intracellular protein degradation pathway. We previously reported that proteasome dysfunction in skeletal muscle significantly impairs muscle growth and development. Furthermore, the inhibition of aminopeptidase, a proteolytic enzyme that removes amino acids from the termini of peptides derived from proteasomal proteolysis, impairs the proliferation and differentiation ability of C2C12 myoblasts. However, no evidence has been reported on the role of aminopeptidases with different substrate specificities on myogenesis. In this study, therefore, we investigated whether the knockdown of aminopeptidases in differentiating C2C12 myoblasts affects myogenesis. The knockdown of the X-prolyl aminopeptidase 1, aspartyl aminopeptidase, leucyl-cystinyl aminopeptidase, methionyl aminopeptidase 1, methionyl aminopeptidase 2, puromycine-sensitive aminopeptidase, and arginyl aminopeptidase like 1 gene in C2C12 myoblasts resulted in defective myogenic differentiation. Surprisingly, the knockdown of leucine aminopeptidase 3 (LAP3) in C2C12 myoblasts promoted myogenic differentiation. We also found that suppression of LAP3 expression in C2C12 myoblasts resulted in the inhibition of proteasomal proteolysis, decreased intracellular branched-chain amino acid levels, and enhanced mTORC2-mediated AKT phosphorylation (S473). Furthermore, phosphorylated AKT induced the translocation of TFE3 from the nucleus to the cytoplasm, promoting myogenic differentiation through increased expression of myogenin. Overall, our study highlights the association of aminopeptidases with myogenic differentiation.


Assuntos
Leucil Aminopeptidase , Desenvolvimento Muscular , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-akt , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Metionil Aminopeptidases/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Camundongos , Leucil Aminopeptidase/metabolismo
8.
Am J Physiol Regul Integr Comp Physiol ; 325(2): R172-R180, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335015

RESUMO

Intracellular Ca2+ concentration ([Ca2+]i) is considered important in the regulation of skeletal muscle mass. This study tested the hypothesis that chronic repeated cooling and/or caffeine ingestion would acutely increase [Ca2+]i and hypertrophy muscles potentially in a fiber-type-dependent manner. Control rats and those fed caffeine were subjected to repeated bidiurnal treatments of percutaneous icing, under anesthesia, to reduce the muscle temperature below ∼5°C. The predominantly fast-twitch tibialis anterior (TA) and slow-twitch soleus (SOL) muscles were evaluated after 28 days of intervention. The [Ca2+]i elevating response to icing was enhanced by caffeine loading only in the SOL muscle, with the response present across a significantly higher temperature range than in the TA muscle under caffeine-loading conditions. In both the TA and SOL muscles, myofiber cross-sectional area (CSA) was decreased by chronic caffeine treatment (mean reductions of 10.5% and 20.4%, respectively). However, in the TA, but not the SOL, CSA was restored by icing (+15.4 ± 4.3% vs. noniced, P < 0.01). In the SOL, but not TA, icing + caffeine increased myofiber number (20.5 ± 6.7%, P < 0.05) and satellite cell density (2.5 ± 0.3-fold) in cross sections. These contrasting muscle responses to cooling and caffeine may reflect fiber-type-specific [Ca2+]i responses and/or differential responses to elevated [Ca2+]i.


Assuntos
Cafeína , Músculo Esquelético , Ratos , Animais , Cafeína/farmacologia , Músculo Esquelético/fisiologia , Temperatura Baixa , Aclimatação , Adaptação Fisiológica , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta/fisiologia , Contração Muscular/fisiologia
10.
Biochem Biophys Res Commun ; 634: 40-47, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36228543

RESUMO

Myoblast integrity is essential for skeletal muscle regeneration. Many intracellular proteins are degraded by the proteasome and converted to amino acids by aminopeptidases through the protein degradation pathway. Although we previously reported its importance for myoblast integrity, the involved mechanism remains unclear. In this study, we focused on the reusability of proteolytic products to elucidate the regulatory mechanism of protein synthesis mediated by the proteasome and aminopeptidases. Proteasome inhibition decreased protein synthesis, but recycled-amino acids derived from proteasomal proteolysis were not reused for de novo protein synthesis in C2C12 myoblasts. On the other hand, proteasome and aminopeptidase inhibition decreased intracellular ATP levels in C2C12 myoblasts. Therefore, it was indicated that amino acids produced by these proteolytic systems may be reutilized for ATP production through its metabolism, not for de novo protein synthesis. These findings suggested the proteasome and aminopeptidases are thought to be involved in protein synthesis through intracellular energy production by recycled-amino acid metabolism, thereby maintaining myoblast integrity.


Assuntos
Aminoácidos , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Aminoácidos/metabolismo , Proteínas/metabolismo , Aminopeptidases/metabolismo , Trifosfato de Adenosina/metabolismo
11.
Sci Rep ; 12(1): 1635, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102189

RESUMO

Lactate production is an important clue for understanding metabolic and signal responses to exercise but its measurement is difficult. Therefore, this study aimed (1) to develop a method of calculating lactate production volume during exercise based on blood lactate concentration and compare the effects between endurance exercise training (EX) and PGC-1α overexpression (OE), (2) to elucidate which proteins and enzymes contribute to changes in lactate production due to EX and muscle PGC-1α OE, and (3) to elucidate the relationship between lactate production volume and signaling phosphorylations involved in mitochondrial biogenesis. EX and PGC-1α OE decreased muscle lactate production volume at the absolute same-intensity exercise, but only PGC-1α OE increased lactate production volume at the relative same-intensity exercise. Multiple linear regression revealed that phosphofructokinase, monocarboxylate transporter (MCT)1, MCT4, and citrate synthase equally contribute to the lactate production volume at high-intensity exercise within physiological adaptations, such as EX, not PGC-1α OE. We found that an exercise intensity-dependent increase in the lactate production volume was associated with a decrease in glycogen concentration and an increase in P-AMPK/T-AMPK. This suggested that the calculated lactate production volume was appropriate and reflected metabolic and signal responses but further modifications are needed for the translation to humans.


Assuntos
Ácido Láctico/sangue , Contração Muscular , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal , Resistência Física , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Biomarcadores/sangue , Citrato (si)-Sintase/metabolismo , Glicogênio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Musculares , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fosfofrutoquinases/metabolismo , Fosforilação , Simportadores/metabolismo , Fatores de Tempo , Regulação para Cima
12.
Am J Physiol Regul Integr Comp Physiol ; 322(1): R14-R27, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755549

RESUMO

Eccentric contractions (ECC) facilitate cytosolic calcium ion (Ca2+) release from the sarcoplasmic reticulum (SR) and Ca2+ influx from the extracellular space. Ca2+ is a vital signaling messenger that regulates multiple cellular processes via its spatial and temporal concentration ([Ca2+]i) dynamics. We hypothesized that 1) a specific pattern of spatial/temporal intramyocyte Ca2+ dynamics portends muscle damage following ECC and 2) these dynamics would be regulated by the ryanodine receptor (RyR). [Ca2+]i in the tibialis anterior muscles of anesthetized adult Wistar rats was measured by ratiometric (i.e., ratio, R, 340/380 nm excitation) in vivo bioimaging with Fura-2 pre-ECC and at 5 and 24 h post-ECC (5 × 40 contractions). Separate groups of rats received RyR inhibitor dantrolene (DAN; 10 mg/kg ip) immediately post-ECC (+DAN). Muscle damage was evaluated by histological analysis on hematoxylin-eosin stained muscle sections. Compared with control (CONT, no ECC), [Ca2+]i distribution was heterogeneous with increased percent total area of high [Ca2+]i sites (operationally defined as R ≥ 1.39, i.e., ≥1 SD of mean control) 5 h post-ECC (CONT, 14.0 ± 8.0; ECC5h: 52.0 ± 7.4%, P < 0.01). DAN substantially reduced the high [Ca2+]i area 5 h post-ECC (ECC5h + DAN: 6.4 ± 3.1%, P < 0.01) and myocyte damage (ECC24h, 63.2 ± 1.0%; ECC24h + DAN: 29.1 ± 2.2%, P < 0.01). Temporal and spatially amplified [Ca2+]i fluctuations occurred regardless of DAN (ECC vs. ECC + DAN, P > 0.05). These results suggest that the RyR-mediated local high [Ca2+]i itself is related to the magnitude of muscle damage, whereas the [Ca2+]i fluctuation is an RyR-independent phenomenon.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Contração Muscular , Fibras Musculares de Contração Rápida/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Autólise , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Calpaína/metabolismo , Dantroleno/farmacologia , Desmina/metabolismo , Cinética , Masculino , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/patologia , Ratos Wistar
13.
J Physiol ; 599(18): 4337-4356, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34368970

RESUMO

KEY POINTS: We investigated the mechanisms underlying faster force recovery from eccentric contractions (ECCs) in female than in male mice, focusing on mitochondrial responses. At 3 days after repeated ECCs (REC3), female mice showed faster recovery from ECC-induced force depression than male mice. At REC3, the mitochondria in females displayed superior responses to those in males: (i) mitochondrial Ca2+ uniporter content of muscles at REC3 was higher than that of rested muscles in females, and (ii) mitochondrial volume density in females was higher than that in males at REC3. Ovariectomized (OVX) female mice showed lower mitochondrial responses at REC3, similar to those observed in male mice, but oestrogen replacement nullified such lower responses in OVX. We concluded that: (i) superior mitochondrial responses after ECCs, at least in part, cause faster force recovery from ECCs in females than in males, and (ii) oestrogen contributes to such superior responses in the mitochondria in females. ABSTRACT: The purpose of this study was to investigate the mechanisms underlying sex differences in force recovery after eccentric contractions (ECCs). The left limbs of female and male mice were exposed to repeated ECCs (five sets of 50 contractions) elicited in vivo in the plantar flexor muscles. Isometric torques were measured before, immediately and at 3 days after ECCs (REC3), and gastrocnemius muscles obtained at REC3 were used for biochemical and morphological analyses. At REC3, a greater torque depression at 40 Hz was observed in males than females. Additionally, the following differences were observed at REC3: (i) in males but not females, triad structure was distorted, (ii) mitochondrial Ca2+ uniporter (MCU) content was increased in females but not in males, and (iii) mitochondrial volume density at REC3 was lower in males than in females. To examine the contribution of oestrogen to torque recovery, female mice were assigned to sham-operated (Sham), ovariectomized (OVX) and OVX treated with 17ß-oestradiol (OVX + E2) groups. At REC3, (i) greater torque depression at 40 Hz was observed in the OVX group than in the Sham and OVX + E2 groups, (ii) MCU content was increased in the Sham and OVX + E2 groups but not the OVX group, and (iii) mitochondrial volume density at REC3 was lower in the OVX group than the Sham and OVX + E2 groups. These results suggest that faster force recovery in females than in males is, at least partly, ascribable to superior mitochondrial responses, and oestrogen supplementation, in part, enhances such responses.


Assuntos
Contração Muscular , Músculo Esquelético , Animais , Estradiol/farmacologia , Estrogênios , Feminino , Masculino , Camundongos , Torque
14.
Physiol Rep ; 9(13): e14921, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34245114

RESUMO

It is an open question as to whether cooling-induced muscle contraction occurs in the in vivo environment. In this investigation, we tested the hypotheses that a rise in intracellular Ca²âº concentration ([Ca²âº]i) and concomitant muscle contraction could be evoked in vivo by reducing muscle temperature and that this phenomenon would be facilitated or inhibited by specific pharmacological interventions designed to impact Ca²âº-induced Ca²âº-release (CICR). Progressive temperature reductions were imposed on the spinotrapezius muscle of Wistar rats under isoflurane anesthesia by means of cold fluid immersion. The magnitude, location, and temporal profile of [Ca²âº]i were estimated using fura-2 loading. Caffeine (1.25-5.0 mM) and procaine (1.6-25.6 mM) loading were applied in separatum to evaluate response plasticity by promoting or inhibiting CICR, respectively. Lowering the temperature of the muscle surface to ~5°C produced active tension and discrete sites with elevated [Ca²âº]i. This [Ca²âº]i elevation differed in magnitude from fiber to fiber and also from site to site within a fiber. Caffeine at 1.25 and 5.0 mM reduced the magnitude of cooling necessary to elevate [Ca²âº]i (i.e., from ~5°C to ~8 and ~16°C, respectively, both p < 0.05) and tension. Conversely, 25.6 mM procaine lowered the temperature at which [Ca²âº]i elevation and tension were detected to ~2°C (p < 0.05). Herein we demonstrate the spatial and temporal relationship between cooling-induced [Ca²âº]i elevation and muscle contractile force in vivo and the plasticity of these responses with CICR promotion and inhibition.


Assuntos
Temperatura Corporal , Cálcio/análise , Músculo Esquelético/química , Animais , Temperatura Corporal/fisiologia , Cafeína/farmacologia , Cálcio/metabolismo , Cálcio/fisiologia , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Procaína/farmacologia , Ratos , Ratos Wistar
15.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R972-R983, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949210

RESUMO

Peripheral artery disease (PAD) in the lower limb compromises oxygen supply due to arterial occlusion. Ischemic skeletal muscle is accompanied by capillary structural deformation. Therefore, using novel microscopy techniques, we tested the hypothesis that endothelial cell swelling temporally and quantitatively corresponds to enhanced microvascular permeability. Hindlimb ischemia was created in male Wistar rat's by iliac artery ligation (AL). The tibialis anterior (TA) muscle microcirculation was imaged using intravenously infused rhodamine B isothiocyanate dextran fluorescent dye via two-photon laser scanning microscopy (TPLSM) and dye extravasation at 3 and 7 days post-AL quantified to assess microvascular permeability. The TA microvascular endothelial ultrastructure was analyzed by transmission electron microscopy (TEM). Compared with control (0.40 ± 0.15 µm3 × 106), using TPLSM, the volumetrically determined interstitial leakage of fluorescent dye measured at 3 (3.0 ± 0.40 µm3 × 106) and 7 (2.5 ± 0.8 µm3 × 106) days was increased (both P < 0.05). Capillary wall thickness was also elevated at 3 (0.21 ± 0.06 µm) and 7 (0.21 ± 0.08 µm) days versus control (0.11 ± 0.03 µm, both P < 0.05). Capillary endothelial cell swelling was temporally and quantitatively associated with elevated vascular permeability in the AL model of PAD but these changes occurred in the absence of elevations in protein levels of vascular endothelial growth factor (VEGF) its receptor (VEGFR2 which decreased by AL-7 day) or matrix metalloproteinase. The temporal coherence of endothelial cell swelling and increased vascular permeability supports a common upstream mediator. TPLSM, in combination with TEM, provides a sensitive and spatially discrete technique to assess the mechanistic bases for, and efficacy of, therapeutic countermeasures to the pernicious sequelae of compromised peripheral arterial function.


Assuntos
Permeabilidade Capilar/fisiologia , Isquemia/fisiopatologia , Microscopia Confocal , Músculo Esquelético/irrigação sanguínea , Animais , Membro Posterior/fisiopatologia , Ligadura/métodos , Microcirculação/fisiologia , Microscopia Confocal/métodos , Microvasos/fisiopatologia , Neovascularização Fisiológica/fisiologia , Ratos Wistar
16.
Nutrients ; 13(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916828

RESUMO

Maintaining blood insulin levels is important for patients with diabetes because insulin secretion capacity declines with the development of the disease. Calorie restriction (CR) is effective for the improvement of glucose tolerance, but it is not clear whether CR can maintain insulin levels in the late stage of diabetes. We examined the effect of CR on whole-body glucose tolerance and fasting blood insulin concentrations in the late stage of diabetes. Male db/db mice were subjected to either a standard laboratory diet ad libitum for 3 weeks (dbdb group) or 40% CR (dbdb+CR group). CR significantly decreased body mass and epididymal fat weight. Glucose tolerance and fasting glucose levels were significantly improved with 3-week CR. Fasting insulin concentrations were decreased in the dbdb group but were maintained in the dbdb+CR group. CR significantly reduced insulin-degrading enzyme (IDE) levels in the liver, and hepatic IDE levels were significantly positively and negatively correlated with plasma glucose concentrations (area under the curve) after glucose administration and after fasting insulin concentrations, respectively. Therefore, 3-week CR maintained blood insulin levels and improved glucose tolerance with decreased hepatic IDE levels in an animal model of late-stage diabetes.


Assuntos
Restrição Calórica/métodos , Diabetes Mellitus Tipo 2/dietoterapia , Insulina/metabolismo , Insulisina/análise , Animais , Glicemia/análise , Glicemia/metabolismo , Peso Corporal , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Jejum , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Resistência à Insulina , Insulisina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fatores de Tempo
17.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R384-R392, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33407019

RESUMO

Heat stress, via its effects on muscle intracellular Ca2+ concentrations ([Ca2+]i), has been invoked as a putative therapeutic countermeasure to type 1 diabetes-induced muscle atrophy. Using a circulation- and neurally intact in vivo muscle preparation, we tested the hypothesis that impaired muscle Ca2+ homeostasis in type 1 diabetic rats is due to attenuated heat stress tolerance mediated via transient receptor potential vanilloid 1 (TRPV1). Male Wistar rats were randomly assigned to one of the following four groups: 1) healthy control 30°C (CONT 30°C); 2) CONT 40°C; 3) diabetes 30°C (DIA 30°C); and 4) DIA 40°C. The temperature of 40°C was selected because it exceeds the TRPV1 activation threshold. Spinotrapezius muscles of Wistar rats were exteriorized in vivo and loaded with the fluorescent Ca2+ probe Fura-2 AM. [Ca2+]i was estimated over 20 min using fluorescence microscopy (340/380 nm ratio) in quiescent muscle held at the required temperature, using a calibrated heat source applied to the ventral muscle surface. Western blotting was performed to determine the protein expression levels of TRPV1 in spinotrapezius muscle. After 20 min of heat stress, the CONT 40°C condition induced a 12.3 ± 5% [Ca2+]i (P < 0.05) elevation that was markedly absent in the DIA 40°C or other conditions. Thus, no significant differences were found among DIA 40°C, DIA 30°C, and CONT 30°C. TRPV1 protein expression was decreased by 42.0 ± 9% in DIA compared with CONT (P < 0.05) and, unlike CONT, heat stress did not increase TRPV1 phosphorylation. In conclusion, diabetes suppresses TRPV1 protein expression and function and inhibits the elevated myocyte [Ca2+]i evoked normally by heat stress. These results suggest that capsaicin or other therapeutic strategies to increase Ca2+ accumulation via TRPV1 might be more effective than hyperthermic therapy for type 1 diabetic patients.


Assuntos
Cálcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Transtornos de Estresse por Calor/metabolismo , Músculo Esquelético/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Glicemia/metabolismo , Capsaicina/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Transtornos de Estresse por Calor/fisiopatologia , Homeostase , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Fosforilação , Ratos Wistar , Canais de Cátion TRPV/agonistas , Fatores de Tempo
18.
Artigo em Inglês | MEDLINE | ID: mdl-33242636

RESUMO

The capillary bed constitutes the obligatory pathway for almost all oxygen (O2) and substrate molecules as they pass from blood to individual cells. As the largest organ, by mass, skeletal muscle contains a prodigious surface area of capillaries that have a critical role in metabolic homeostasis and must support energetic requirements that increase as much as 100-fold from rest to maximal exercise. In 1919 Krogh's 3 papers, published in the Journal of Physiology, brilliantly conflated measurements of muscle capillary function at rest and during contractions with Agner K. Erlang's mathematical model of O2 diffusion. These papers single-handedly changed the perception of capillaries from passive vessels serving at the mercy of their upstream arterioles into actively contracting vessels that were recruited during exercise to elevate blood-myocyte O2 flux. Although seminal features of Krogh's model have not withstood the test of time and subsequent technological developments, Krogh is credited with helping found the field of muscle microcirculation and appreciating the role of the capillary bed and muscle O2 diffusing capacity in facilitating blood-myocyte O2 flux. Today, thanks in large part to Krogh, it is recognized that comprehending the role of the microcirculation, as it supports perfusive and diffusive O2 conductances, is fundamental to understanding skeletal muscle plasticity with exercise training and resolving the mechanistic bases by which major pathologies including heart failure and diabetes cripple exercise tolerance and cerebrovascular dysfunction predicates impaired executive function.


Assuntos
Capilares/fisiologia , Músculos/irrigação sanguínea , Oxigênio/metabolismo , Animais , Difusão , Humanos , Células Musculares/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 320(2): R129-R137, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206560

RESUMO

The effect of cooling on in vivo intracellular calcium ion concentration [Ca2+]i after eccentric contractions (ECs) remains to be determined. We tested the hypothesis that cryotherapy following ECs promotes an increased [Ca2+]i and induces greater muscle damage in two muscles with substantial IIb and IIx fiber populations. The thin spinotrapezius (SPINO) muscles of Wistar rats were used for in vivo [Ca2+]i imaging, and tibialis anterior (TA) muscles provided greater fidelity and repeatability of contractile function measurements. SPINO [Ca2+]i was estimated using fura 2-AM and the magnitude, location, and temporal profile of [Ca2+]i determined as the temperature near the muscle surface post-ECs was decreased from 30°C (control) to 20°C or 10°C. Subsequently, in the TA, the effect of post-ECs cooling to 10°C on muscle contractile performance was determined at 1 and 2 days after ECs. TA muscle samples were examined by hematoxylin and eosin staining to assess damage. In SPINO, reducing the muscle temperature from 30°C to 10°C post-ECs resulted in a 3.7-fold increase in the spread of high [Ca2+]i sites generated by ECs (P < 0.05). These high [Ca2+]i sites demonstrated partial reversibility when rewarmed to 30°C. Dantrolene, a ryanodine receptor Ca2+ release inhibitor, reduced the presence of high [Ca2+] sites at 10°C. In the TA, cooling exacerbated ECs-induced muscle strength deficits via enhanced muscle fiber damage (P < 0.05). By demonstrating that cooling post-ECs potentiates [Ca2+]i derangements, this in vivo approach supports a putative mechanistic basis for how postexercise cryotherapy might augment muscle fiber damage and decrease subsequent exercise performance.


Assuntos
Cálcio/metabolismo , Temperatura Baixa , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Animais , Masculino , Ratos , Ratos Wistar
20.
Physiol Rep ; 8(16): e14540, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32812347

RESUMO

Chronic endurance exercise training induces morphological and metabolic alterations including mitochondrial biogenesis in white adipose tissue (WAT) and brown adipose tissue (BAT) in rodents. A myokine called meteorin-like (Metrnl) is associated with morphological and metabolic adaptation and increased in blood after acute resistance exercise. However, the effects of chronic resistance exercise training (RT), which aims to increase muscle mass and strength, on WAT and BAT are unclear. Therefore, we aimed to clarify the effects of RT on morphological and metabolic parameters in WAT and BAT and on plasma Metrnl concentrations. We applied electrical stimulation to both legs of rats as RT three times a week for 4 weeks. RT reduced adipocyte size in subcutaneous WAT but induced no changes in mitochondrial and thermogenesis proteins. In BAT, peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) protein levels and mitochondrial content markers were significantly higher in the RT group compared with the control group. A significant positive correlation was found between the expression of PGC-1α in BAT and plasma Metrnl concentrations. These results suggest that plasma Metrnl is associated with PGC-1α and mitochondrial biogenesis in BAT. This study describes a potential role of RT in preventing metabolic diseases via altering WAT and BAT and increasing plasma Mertnl concentrations.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Movimento , Condicionamento Físico Animal/métodos , Adipocinas/sangue , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Estimulação Elétrica/métodos , Masculino , Biogênese de Organelas , PPAR gama/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...