Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 38(3): 609-619, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31608494

RESUMO

We aimed to investigate whether post-traumatic osteoarthritis (PTOA) progression is appropriately represented by a PTOA mouse model using a unique climbing cage to add mechanical loading after anterior cruciate ligament (ACL) transection and to determine how Hedgehog signaling inhibition prevents PTOA progression by observing time-dependent morphological changes. This controlled laboratory study histologically compared mice with surgically-induced ACL transection (ACLT) and those with voluntary increased activity in a climbing cage from 1 week postoperatively (ACLT + climbing). We generated conditional knockout (cKO) mice with a deleted Smoothened (Smo) gene. Time-dependent histopathological, immunohistochemical, and gene expression analyses were performed. The ACLT + climbing group showed more severe cartilage defects and massive osteophyte formation than the ACLT group. Smo deletion significantly suppressed PTOA progression. The time-dependent assessment revealed cartilaginous processes of equivalent size at the posterior tibial margin in the Smo cKO and control mice at 4 weeks postoperatively. However, at 8 weeks postoperatively, mature ossifying lesions were detected in the controls but not in Smo cKO mice. In the articular cartilage, ADAMTS5 and RUNX2 expression were observed in hypertrophic chondrocytes near the defective cartilage in controls but not in Smo cKO mice. Climbing exercise after ACLT accelerated PTOA progression more severely not only through increasing joint instability induced by ACLT but also through mechanical loading force induced by climbing exercise. Hedgehog signaling inhibition attenuated PTOA progression by suppressing chondrocyte hypertrophy induced by mechanical loads, to which ACL-deficient athletes are usually exposed. Thus, Hedgehog signaling inhibition may be a therapeutic option to prevent arthritic changes in athletes. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:609-619, 2020.


Assuntos
Lesões do Ligamento Cruzado Anterior/patologia , Cartilagem Articular/patologia , Proteínas Hedgehog/metabolismo , Osteoartrite/metabolismo , Transdução de Sinais , Receptor Smoothened/metabolismo , Proteína ADAMTS5/metabolismo , Animais , Ligamento Cruzado Anterior/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Articulação do Joelho/patologia , Masculino , Camundongos , Camundongos Knockout , Osteoartrite/genética , Condicionamento Físico Animal , Receptor Smoothened/genética , Tíbia/fisiologia , Ferimentos e Lesões
2.
Bone ; 53(2): 358-68, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23313283

RESUMO

INTRODUCTION: Aldehyde dehydrogenase 2 (ALDH2) degrades acetaldehyde produced by the metabolism of alcohol. The inactive ALDH2 phenotype is prevalent in East Asians, and an association between this ALDH2 polymorphism and osteoporosis has been reported. In our previous study, we found that alcohol consumption results in decreased trabecular bone volume in aldh2 knockout (aldh2(-/-)) mice compared with the volume in wild-type (aldh2(+/+)) mice. However, the effect of aldh2 gene on the skeletal phenotype in the absence of alcohol consumption remains unknown. The aim of this study was to clarify the effect of aldh2 disruption on femoral bone structure and dynamics in aldh2-disrupted mice in the absence of alcohol consumption. MATERIALS AND METHODS: We examined aldh2(-/-) and aldh2(+/+) mice at the ages of 4, 8 and 12weeks. The femoral bone length and bone mineral density (BMD) were measured using peripheral quantitative computed tomography. The mechanical strength was assessed by the three-point bending test at 12weeks, and cortical bone histomorphometry at the femur diaphysis was performed at all three time points. Osteogenic activities in aldh2(-/-) and aldh2(+/+) mice were assessed by osteoblast culture from calvariae of the neonatal mice. Bilateral femoral and tibial bones containing no bone marrow cells of 8-week-old mice were used for analysis of mRNA expression. In addition, mRNA expression in aldh2(-/-) and aldh2(+/+) mice after tail suspension or climbing exercise for 7days from 8weeks was analyzed to clarify the response to mechanical loading. RESULTS: At 12weeks, there were no significant differences in femoral bone length, trabecular BMD in the distal metaphyses of the femurs, or mechanical strength between aldh2(-/-) and aldh2(+/)(+) mice, whereas cortical BMD and cortical thickness were significantly increased and cross-sectional area and bone marrow area were significantly decreased in the femoral diaphysis of aldh2(-/-) mice relative to the corresponding values in aldh2(+/+) mice. At 8weeks, bone formation rate and mineral apposition rate on the periosteal and endocortical surfaces were significantly increased in aldh2(-/-) mice relative to the rates in aldh(+/+) mice. Calvarial osteoblast culture study revealed that the percentage of alkaline phosphatase stained cells was significantly higher in aldh2(-/-) mice compared to that in aldh(+/+) mice. Quantitative real-time RT-PCR revealed a significant increase in the expressions of bmp2, osterix, runx2, and col1a1 mRNA in aldh2(-/-) mice, along with an increase in the expression of wnt5a mRNA and the lrp5/sost mRNA ratio. The mRNA expressions of bmp2, osterix, runx2 and pthr in aldh2(-/-) mice were significantly decreased after climbing exercise compared to those in the control, although the mRNA expressions of bmp2, osterix, runx2 were not significantly decreased and pthr mRNA expression was increased in aldh(+/+) mice after climbing exercise. CONCLUSION: Our results show that disruption of aldh2 gene resulted in altered cortical bone structure and dynamics in mice. Cross-sectional area was decreased. Cortical BMD was increased owing to the promotion of cortical bone formation on the periosteal and endocortical surfaces of the femoral diaphysis. The possible mechanisms underlying altered cortical bone structure in aldh2(-/-) mice were gene-related higher osteogenic activity of osteoblasts and weakened osteogenice response to mechanical loading in growth period.


Assuntos
Aldeído Desidrogenase/metabolismo , Densidade Óssea/fisiologia , Diáfises/metabolismo , Fêmur/metabolismo , Aldeído Desidrogenase/genética , Aldeído-Desidrogenase Mitocondrial , Animais , Densidade Óssea/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Fêmur/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...