Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 134(4): 1153-65, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16019151

RESUMO

Acetylcholine and dopamine are simultaneously released in the cortex at the occurrence of novel stimuli. In addition to a series of excitatory effects, acetylcholine decreases the release of glutamate acting on presynaptic muscarinic receptors. By recording evoked excitatory postsynaptic currents in layers II/III neurons of the auditory cortex, we found that activation of muscarinic receptors by oxotremorine reduces the amplitude of glutamatergic current (A(oxo)/A(ctr) = 0.53 +/- 0.17) in the absence but not in the presence of dopamine (A(oxo)/A(ctr) = 0.89 +/- 0.12 in 20 microM dopamine). These data suggested that an excessive sensitivity to dopamine, such as postulated in schizophrenia, could prevent the decrease of glutamate release associated with the activation of cholinergic corticopetal nuclei. Thus, a possible mechanism of action of antipsychotic drugs could be through a depression of the glutamatergic signal in the auditory cortex. We tested the capability of haloperidol, clozapine and lamotrigine to affect glutamatergic synaptic currents and their muscarinic modulation. We found that antipsychotics not only work as dopamine receptor antagonists in re-establishing muscarinic modulation, but also directly depress glutamatergic currents. These results suggest that presynaptic modulation of glutamate release can account for a dual route of action of antipsychotic drugs.


Assuntos
Córtex Auditivo/metabolismo , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Receptores Muscarínicos/metabolismo , Animais , Antipsicóticos/farmacologia , Córtex Auditivo/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Agonistas Muscarínicos/farmacologia , Neurônios , Técnicas de Cultura de Órgãos , Oxotremorina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Receptores Muscarínicos/efeitos dos fármacos , Esquizofrenia/fisiopatologia
2.
Nat Neurosci ; 4(12): 1230-7, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11694887

RESUMO

Sound features are blended together en route to the central nervous system before being discriminated for further processing by the cortical synaptic network. The mechanisms underlying this synaptic processing, however, are largely unexplored. Intracortical processing of the auditory signal was investigated by simultaneously recording from pairs of connected principal neurons in layer II/III in slices from A1 auditory cortex. Physiological patterns of stimulation in the presynaptic cell revealed two populations of postsynaptic events that differed in mean amplitude, failure rate, kinetics and short-term plasticity. In contrast, transmission between layer II/III pyramidal neurons in barrel cortex were uniformly of large amplitude and high success (release) probability (Pr). These unique features of auditory cortical transmission may provide two distinct mechanisms for discerning and separating transient from stationary features of the auditory signal at an early stage of cortical processing.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Lisina/análogos & derivados , Rede Nervosa/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Córtex Auditivo/citologia , Córtex Auditivo/efeitos dos fármacos , Vias Auditivas/citologia , Vias Auditivas/efeitos dos fármacos , Percepção Auditiva/efeitos dos fármacos , Cálcio/metabolismo , Cálcio/farmacologia , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/citologia , Rede Nervosa/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo
3.
J Neurosci ; 21(19): 7848-58, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11567076

RESUMO

The dorsal cochlear nucleus (DCN) is a second-order auditory structure that also receives nonauditory information, including somatosensory inputs from the dorsal column and spinal trigeminal nuclei. Here we investigate the peripheral sources of the somatosensory inputs to DCN. Electrical stimulation was applied to cervical nerves C1-C8, branches of C2, branches of the trigeminal nerve, and hindlimb nerves. The largest evoked potentials in the DCN were produced by C2 stimulation and by stimulation of its branches that innervate the pinna. Electrical stimulation of C2 produced a pattern of inhibition and excitation of DCN principal cells comparable with that seen in previous studies with stimulation of the primary somatosensory nuclei, suggesting that the same pathway was activated. Because C2 contains both proprioceptive and cutaneous fibers, we applied peripheral somatosensory stimulation to identify the effective somatosensory modalities. Only stimuli that activate pinna muscle receptors, such as stretch or vibration of the muscles connected to the pinna, were effective in driving DCN units, whereas cutaneous stimuli such as light touch, brushing of hairs, and stretching of skin were ineffective. These results suggest that the largest somatosensory inputs to the DCN originate from muscle receptors associated with the pinna. They support the hypothesis that a role of the DCN in hearing is to coordinate pinna orientation to sounds or to support correction for the effects of pinna orientation on sound-localization cues.


Assuntos
Núcleo Coclear/fisiologia , Orelha Externa/fisiologia , Propriocepção/fisiologia , Estimulação Acústica , Vias Aferentes/fisiologia , Animais , Gatos , Descorticação Cerebral , Estado de Descerebração , Orelha Externa/inervação , Estimulação Elétrica , Potenciais Evocados/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Pescoço/inervação , Nervos Periféricos/fisiologia , Estimulação Física , Tempo de Reação/fisiologia , Localização de Som/fisiologia , Medula Espinal/fisiologia , Nervo Trigêmeo/fisiologia
4.
J Neurophysiol ; 85(2): 523-38, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11160490

RESUMO

Pyramidal cells in the dorsal cochlear nucleus (DCN) show three characteristic discharge patterns in response tones: pauser, buildup, and regular firing. Experimental evidence suggests that a rapidly inactivating K+ current (I(KIF)) plays a critical role in generating these discharge patterns. To explore the role of I(KIF), we used a computational model based on the biophysical data. The model replicated the dependence of the discharge pattern on the magnitude and duration of hyperpolarizing prepulses, and I(KIF) was necessary to convey this dependence. Phase-plane and perturbation analyses show that responses to depolarization are critically controlled by the amount of inactivation of I(KIF). Experimentally, half-inactivation voltage and kinetics of I(KIF) show wide variability. Varying these parameters in the model revealed that half-inactivation voltage, and activation and inactivation rates, controls the voltage and time dependence of the model cell discharge. This suggests that pyramidal cells can adjust their sensitivity to different temporal patterns of inhibition and excitation by modulating the kinetics of I(KIF). Overall, I(KIF) is a critical conductance controlling the excitability of DCN pyramidal cells.


Assuntos
Núcleo Coclear/fisiologia , Modelos Neurológicos , Potássio/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/fisiologia , Núcleo Coclear/citologia , Condutividade Elétrica , Cinética
5.
J Neurosci ; 19(6): 2195-208, 1999 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10066273

RESUMO

Pyramidal cells in the dorsal cochlear nucleus (DCN) show three distinct temporal discharge patterns in response to sound: "pauser," "buildup," and "chopper." Similar discharge patterns are seen in vitro and depend on the voltage from which the cell is depolarized. It has been proposed that an inactivating A-type K+ current (IKI) might play a critical role in generating the three different patterns. In this study we examined the characteristics of transient currents in DCN pyramidal cells to evaluate this hypothesis. Morphologically identified pyramidal cells in rat brain slices (P11-P17) exhibited the three voltage-dependent discharge patterns. Two inactivating currents were present in outside-out patches from pyramidal cells: a rapidly inactivating (IKIF, tau approximately 11 msec) current insensitive to block by tetraethylammonium (TEA) and variably blocked by 4-aminopyridine (4-AP) with half-inactivation near -85 mV, and a slowly inactivating TEA- and 4-AP-sensitive current (IKIS, tau approximately 145 msec) with half-inactivation near -35 mV. Recovery from inactivation at 34 degrees C was described by a single exponential with a time constant of 10-30 msec, similar to the rate at which first spike latency increases with the duration of a hyperpolarizing prepulse. Acutely isolated cells also possessed a rapidly activating (<1 msec at 22 degrees C) transient current that activated near -45 mV and showed half-inactivation near -80 mV. A model demonstrated that the deinactivation of IKIF was correlated with the discharge patterns. Overall, the properties of the fast inactivating K+ current were consistent with their proposed role in shaping the discharge pattern of DCN pyramidal cells.


Assuntos
Núcleo Coclear/fisiologia , Neurônios/fisiologia , Potássio/fisiologia , 4-Aminopiridina/farmacologia , Animais , Núcleo Coclear/citologia , Condutividade Elétrica , Eletrofisiologia , Técnicas In Vitro , Cinética , Modelos Neurológicos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Tetraetilamônio/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...