Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 11(17): e15809, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688424

RESUMO

OBJECTIVES: Myocardial infarction (MI) initiates a complex reparative response during which damaged cardiac muscle is replaced by connective tissue. While the initial repair is essential for survival, excessive fibrosis post-MI is a primary contributor to progressive cardiac dysfunction, and ultimately heart failure. Currently, there are no approved drugs for the prevention or the reversal of cardiac fibrosis. Therefore, we tested the therapeutic potential of repurposed mesalazine as a post-MI therapy, as distinct antifibrotic effects have recently been demonstrated. METHODS: At 8 weeks of age, MI was induced in male C57BL/6J mice by LAD ligation. Mesalazine was administered orally at a dose of 100 µg/g body weight in drinking water. Fluid intake, weight development, and cardiac function were monitored for 28 days post intervention. Fibrosis parameters were assessed histologically and via qPCR. RESULTS: Compared to controls, mesalazine treatment offered no survival benefit. However, no adverse effects on heart and kidney function and weight development were observed, either. While total cardiac fibrosis remained largely unaffected by mesalazine treatment, we found a distinct reduction of perivascular fibrosis alongside reduced cardiac collagen expression. CONCLUSIONS: Our findings warrant further studies on mesalazine as a potential add-on therapy post-MI, as perivascular fibrosis development was successfully prevented.


Assuntos
Mesalamina , Infarto do Miocárdio , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Mesalamina/farmacologia , Mesalamina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Coração , Miocárdio
2.
Naunyn Schmiedebergs Arch Pharmacol ; 394(11): 2233-2244, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34410453

RESUMO

Skin fibrosis is a complex biological remodeling process occurring in disease like systemic sclerosis, morphea, or eosinophilic fasciitis. Since the knowledge about the underlying pathomechanisms is still incomplete, there is currently no therapy, which prevents or reverses skin fibrosis sufficiently. The present study investigates the role of polo-like kinase 2 (PLK2) and the pro-fibrotic cytokine osteopontin (OPN) in the pathogenesis of cutaneous fibrosis and demonstrates the antifibrotic effects of systemic mesalazine treatment in vivo. Isolated primary dermal fibroblasts of PLK2 wild-type (WT) and knockout (KO) mice were characterized in vitro. Skin thickness and histoarchitecture were studied in paraffin-embedded skin sections. The effects of mesalazine treatment were examined in isolated fibroblasts and PLK2 KO mice, which were fed 100 µg/g mesalazine for 6 months via the drinking water. Compared to WT, PLK2 KO fibroblasts displayed higher spontaneous myofibroblast differentiation, reduced proliferation rates, and overexpression of the fibrotic cytokine OPN. In vitro, 72 h of treatment with 10 mmol/L mesalazine induced phenotype conversion in PLK2 KO fibroblasts and attenuated OPN expression by inhibiting ERK1/2. In vivo, dermal myofibroblast differentiation, collagen accumulation, and skin thickening were prevented by mesalazine in PLK2 KO. Plasma creatinine levels indicated good tolerability of systemic long-term mesalazine treatment. The current study reveals a spontaneous fibrotic skin phenotype and ERK1/2-dependent OPN overexpression in PLK2 KO mice. We provide experimental evidence for the antifibrotic effectiveness of systemic mesalazine treatment to prevent fibrosis of the skin, suggesting further investigation in experimental and clinical settings.


Assuntos
Fibroblastos/efeitos dos fármacos , Mesalamina/farmacologia , Proteínas Serina-Treonina Quinases/genética , Pele/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/toxicidade , Diferenciação Celular/efeitos dos fármacos , Colágeno/metabolismo , Creatinina/sangue , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Fibrose/prevenção & controle , Masculino , Mesalamina/administração & dosagem , Mesalamina/toxicidade , Camundongos , Camundongos Knockout , Osteopontina/genética , Pele/patologia
3.
Cells ; 10(3)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799608

RESUMO

Pulmonary fibrosis is the chronic-progressive replacement of healthy lung tissue by extracellular matrix, leading to the destruction of the alveolar architecture and ultimately death. Due to limited pathophysiological knowledge, causal therapies are still missing and consequently the prognosis is poor. Thus, there is an urgent clinical need for models to derive effective therapies. Polo-like kinase 2 (PLK2) is an emerging regulator of fibroblast function and fibrosis. We found a significant downregulation of PLK2 in four different entities of human pulmonary fibrosis. Therefore, we characterized the pulmonary phenotype of PLK2 knockout (KO) mice. Isolated pulmonary PLK2 KO fibroblasts displayed a pronounced myofibroblast phenotype reflected by increased expression of αSMA, reduced proliferation rates and enhanced ERK1/2 and SMAD2/3 phosphorylation. In PLK2 KO, the expression of the fibrotic cytokines osteopontin and IL18 was elevated compared to controls. Histological analysis of PLK2 KO lungs revealed early stage remodeling in terms of alveolar wall thickening, increased alveolar collagen deposition and myofibroblast foci. Our results prompt further investigation of PLK2 function in pulmonary fibrosis and suggest that the PLK2 KO model displays a genetic predisposition towards pulmonary fibrosis, which could be leveraged in future research on this topic.


Assuntos
Colágeno/metabolismo , Fibroblastos/enzimologia , Pulmão/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Fibrose Pulmonar/enzimologia , Adulto , Animais , Proliferação de Células , Células Cultivadas , Feminino , Fibroblastos/patologia , Deleção de Genes , Predisposição Genética para Doença , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Pulmão/patologia , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Pessoa de Meia-Idade , Miofibroblastos/enzimologia , Miofibroblastos/patologia , Osteopontina/genética , Osteopontina/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Transdução de Sinais
4.
Naunyn Schmiedebergs Arch Pharmacol ; 394(3): 533-543, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33064167

RESUMO

Cardiovascular diseases are exacerbated and driven by cardiac fibrosis. TGFß induces fibroblast activation and differentiation into myofibroblasts that secrete excessive extracellular matrix proteins leading to stiffening of the heart, concomitant cardiac dysfunction, and arrhythmias. However, effective pharmacotherapy for preventing or reversing cardiac fibrosis is presently unavailable. Therefore, drug repurposing could be a cost- and time-saving approach to discover antifibrotic interventions. The aim of this study was to investigate the antifibrotic potential of mesalazine in a cardiac fibroblast stress model. TGFß was used to induce a profibrotic phenotype in a human cardiac fibroblast cell line. After induction, cells were treated with mesalazine or solvent control. Fibroblast proliferation, key fibrosis protein expression, extracellular collagen deposition, and mechanical properties were subsequently determined. In response to TGFß treatment, fibroblasts underwent a profound phenoconversion towards myofibroblasts, determined by the expression of fibrillary αSMA. Mesalazine reduced differentiation nearly by half and diminished fibroblast proliferation by a third. Additionally, TGFß led to increased cell stiffness and adhesion, which were reversed by mesalazine treatment. Collagen 1 expression and deposition-key drivers of fibrosis-were significantly increased upon TGFß stimulation and reduced to control levels by mesalazine. SMAD2/3 and ERK1/2 phosphorylation, along with reduced nuclear NFκB translocation, were identified as potential modes of action. The current study provides experimental pre-clinical evidence for antifibrotic effects of mesalazine in an in vitro model of cardiac fibrosis. Furthermore, it sheds light on possible mechanisms of action and suggests further investigation in experimental and clinical settings.


Assuntos
Cardiotônicos/uso terapêutico , Mesalamina/uso terapêutico , Miocárdio/patologia , Actinas/metabolismo , Cardiotônicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Colágeno Tipo I/metabolismo , Reposicionamento de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Humanos , Mesalamina/farmacologia , Miocárdio/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , NF-kappa B/metabolismo , Proteína Smad2/antagonistas & inibidores , Proteína Smad2/metabolismo , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta
5.
FEBS Open Bio ; 10(7): 1210-1218, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32421922

RESUMO

Atrial fibrillation (AF) is regularly accompanied by cardiac fibrosis and concomitant heart failure. Due to the heterogeneous nature and complexity of fibrosis, the knowledge about the underlying mechanisms is limited, which prevents effective pharmacotherapy. A deeper understanding of cardiac fibroblasts is essential to meet this need. We previously described phenotypic and functional differences between atrial fibroblasts from patients in sinus rhythm and with AF. Herein, we established and characterized a novel human atrial fibroblast line, which displays typical fibroblast morphology and function comparable to primary cells but with improved proliferation capacity and low spontaneous myofibroblast differentiation. These traits make our model suitable for the study of fibrosis mechanisms and for drug screening aimed at developing effective antifibrotic pharmacotherapy.


Assuntos
Fibroblastos/metabolismo , Fibrose/metabolismo , Átrios do Coração/metabolismo , Modelos Biológicos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Fibroblastos/patologia , Fibrose/patologia , Átrios do Coração/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...