Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 4(4): e5033, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19343226

RESUMO

microRNAs (miRNAs) are known to play an essential role in controlling a broad range of biological processes including animal development. Accordingly, many miRNAs are expressed preferentially in one or a small number of cell types. Yet the mechanisms responsible for this selectivity are not well understood. The aim of this study was to elucidate the molecular basis of cell-specific expression of the pri-miR-375 gene, which is selectively expressed in pancreatic islets, and has been implicated both in the development of islets, and the function of mature pancreatic beta cells. An evolutionarily conserved 768 bp region of DNA upstream of the pri-miR-375 gene was linked to GFP and luciferase reporter genes, and expression monitored in transgenic mice and transfected cultured cells. Deletion and targeted mutagenesis analysis was used to evaluate the functional significance of sequence blocks within the upstream fragment. 5'-RACE analysis was used for mapping the pri-miR-375 gene transcription start site. The conserved 768 bp region was able to direct preferential expression of a GFP reporter gene to pancreatic islets in transgenic mice. Deletion analysis using a luciferase reporter gene in transfected cultured cell lines confirmed the cell specificity of the putative promoter region, and identified several key cis-elements essential for optimal activity, including E-boxes and a TATA sequence. Consistent with this, 5'-RACE analysis identified a transcription start site within this DNA region, 24 bp downstream of the TATA sequence. These studies define the promoter of the pri-miR-375 gene, and show that islet-specific expression of the pri-miR-375 gene is controlled at the transcriptional level. Detailed analysis of the transcriptional mechanisms controlling expression of miRNA genes will be essential to permit a comprehensive understanding of the complex role of miRNAs such as miR-375 in developmental processes.


Assuntos
Regulação da Expressão Gênica/genética , Ilhotas Pancreáticas/metabolismo , MicroRNAs/genética , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Linhagem Celular , Cricetinae , Primers do DNA , DNA Complementar , Imunofluorescência , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , TATA Box
2.
J Mol Recognit ; 22(2): 91-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18979459

RESUMO

Efficient degradation of cellulose by the anaerobic thermophilic bacterium, Clostridium thermocellum, is carried out by the multi-enzyme cellulosome complex. The enzymes on the complex are attached in a calcium-dependent manner via their dockerin (Doc) module to a cohesin (Coh) module of the cellulosomal scaffoldin subunit. In this study, we have optimized the Coh-Doc interaction for the purpose of protein affinity purification. A C. thermocellum Coh module was thus fused to a carbohydrate-binding module, and the resultant fusion protein was applied directly onto beaded cellulose, thereby serving as a non-covalent "activation" procedure. A complementary Doc module was then fused to a model protein target: xylanase T-6 from Geobacillus stearothermophilus. However, the binding to the immobilized Coh was only partially reversible upon treatment with EDTA, and only negligible amounts of the target protein were eluted from the affinity column. In order to improve protein elution, a series of truncated Docs were designed in which the calcium-coordinating function was impaired without appreciably affecting high-affinity binding to Coh. A shortened Doc of only 48 residues was sufficient to function as an effective affinity tag, and highly purified target protein was achieved directly from crude cell extracts in a single step with near-quantitative recovery of the target protein. Effective EDTA-mediated elution of the sequestered protein from the column was the key step of the procedure. The affinity column was reusable and maintained very high levels of capacity upon repeated rounds of loading and elution. Reusable Coh-Doc affinity columns thus provide an efficient and attractive approach for purifying proteins in high yield by modifying the calcium-binding loop of the Doc module.


Assuntos
Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/metabolismo , Cromatografia de Afinidade , Proteínas Cromossômicas não Histona/isolamento & purificação , Proteínas Cromossômicas não Histona/metabolismo , Engenharia Genética , Sequência de Aminoácidos , Cálcio/metabolismo , Celulose/metabolismo , Clostridium thermocellum/química , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Ácido Edético/farmacologia , Geobacillus stearothermophilus/enzimologia , Dados de Sequência Molecular , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Xilosidases/metabolismo , Coesinas
3.
Biochem Soc Trans ; 36(Pt 3): 360-2, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18481958

RESUMO

GPR40 {FFAR1 [non-esterified ('free') fatty acid receptor 1]} is a G-protein-coupled receptor expressed preferentially in pancreatic beta-cells. GPR40 functions as a receptor for medium and long-chain fatty acids, and has been implicated in mediating both physiological and pathological effects of fatty acids on beta-cells. The GPR40 gene is encoded at an interesting chromosomal locus that contains several genes: at the 5'-end of the locus, located approximately 4 kb upstream of GPR40, is CD22, a gene encoding a receptor expressed selectively in lymphocytes and involved in B-lymphocyte maturation and function. At the 3'-end of the locus are the GPR41 (FFAR3) and GPR43 (FFAR2) genes encoding receptors activated by short-chain fatty acids. The intergenic region between CD22 and GPR40 contains several evolutionarily conserved sequence blocks, among them HR2 and HR3. beta-Cell-specific expression of GPR40 is controlled at the transcriptional level through HR2, a potent beta-cell-specific enhancer. The mechanisms controlling cell-specific expression of the remaining genes in the cluster are unknown. Given the divergent modes of expression of the genes within the locus and their demonstrated physiological significance, it is important to analyse further the locus with a view to fully understanding the basis for transcriptional regulation of the encoded genes.


Assuntos
Regulação da Expressão Gênica , Receptores Acoplados a Proteínas G/genética , Animais , Sequência de Bases , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...