Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 87(11): 11E315, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910569

RESUMO

X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions, in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.

2.
Phys Rev E ; 94(5-1): 053203, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27967059

RESUMO

Many aspects of physical phenomena occurring when an intense laser pulse with subpicosecond duration and an intensity of 10^{18}-10^{19}W/cm^{2} heats an underdense plasma in a supersonic clustered gas jet are studied to determine the relative contribution of thermal and nonthermal processes to soft- and hard-x-ray emission from debris-free plasmas. Experiments were performed at the University of Nevada, Reno (UNR) Leopard laser operated with a 15-J, 350-fs pulse and different pulse contrasts (10^{7} or 10^{5}). The supersonic linear (elongated) nozzle generated Xe cluster-monomer gas jets as well as jets with Kr-Ar or Xe-Kr-Ar mixtures with densities of 10^{18}-10^{19}cm^{-3}. Prior to laser heating experiments, all jets were probed with optical interferometry and Rayleigh scattering to measure jet density and cluster distribution parameters. The supersonic linear jet provides the capability to study the anisotropy of x-ray yield from laser plasma and also laser beam self-focusing in plasma, which leads to efficient x-ray generation. Plasma diagnostics included x-ray diodes, pinhole cameras, and spectrometers. Jet signatures of x-ray emission from pure Xe gas, as well as from a mixture with Ar and Kr, was found to be very different. The most intense x-ray emission in the 1-9 KeV spectral region was observed from gas mixtures rather than pure Xe. Also, this x-ray emission was strongly anisotropic with respect to the direction of laser beam polarization. Non-local thermodynamic equilibrium (Non-LTE) models have been implemented to analyze the x-ray spectra to determine the plasma temperature and election density. Evidence of electron beam generation in the supersonic jet plasma was found. The influence of the subpicosecond laser pulse contrast (a ratio between the laser peak intensity and pedestal pulse intensity) on the jets' x-ray emission characteristics is discussed. Surprisingly, it was found that the x-ray yield was not sensitive to the prepulse contrast ratio.

3.
Rev Sci Instrum ; 85(4): 046106, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24784684

RESUMO

Detection of low-energy ions via Thomson parabola mass analyzer in the absence of any additional electrical systems is examined. Numerous low-energy ions were recorded on UF-4 solid state emulsion films. Kinetic energies between 1 and 4 keV of ions generated by YAG laser focused on Al and Ti targets were obtained using Thomson parabola measurements. Characteristics of ion tracks on the UF-4 detector are discussed in terms of pressure ranges of vacuum chamber. Moreover, differences in charges of ions between this study and previous spectroscopic measurements are discussed.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25615200

RESUMO

A compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources is experimentally demonstrated in a configuration with a central target and tailored shine shields at a 1.7-MA Zebra generator. Driving in parallel two magnetically decoupled compact double-planar-wire Z pinches has demonstrated the generation of synchronized x-ray bursts that correlated well in time with x-ray emission from a central reemission target. Good agreement between simulated and measured hohlraum radiation temperature of the central target is shown. The advantages of compact hohlraum design applications for multi-MA facilities are discussed.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(4 Pt 2): 046404, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23214697

RESUMO

The paper presents an extended description of the amplified wire ablation dynamics model (WADM), which accounts in a single simulation for the processes of wire ablation and implosion of a wire array load of arbitrary geometry and wire material composition. To investigate the role of wire ablation effects, the implosions of cylindrical and planar wire array loads at the university based generators Cobra (Cornell University) and Zebra (University of Nevada, Reno) have been analyzed. The analysis of the experimental data shows that the wire mass ablation rate can be described as a function of the current through the wire and some coefficient defined by the wire material properties. The aluminum wires were found to ablate with the highest rate, while the copper ablation is the slowest one. The lower wire ablation rate results in a higher inward velocity of the ablated plasma, a higher rate of the energy coupling with the ablated plasma, and a more significant delay of implosion for a heavy load due to the ablation effects, which manifest the most in a cylindrical array configuration and almost vanish in a single-planar array configuration. The WADM is an efficient tool suited for wire array load design and optimization in wide parameter ranges, including the loads with specific properties needed for the inertial confinement fusion research and laboratory astrophysics experiments. The data output from the WADM simulation can be used to simplify the radiation magnetohydrodynamics modeling of the wire array plasma.

6.
Rev Sci Instrum ; 83(10): 10E101, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126923

RESUMO

Impurities play a critical role in magnetic fusion research. In large quantities, impurities can cool and dilute plasma creating problems for achieving ignition and burn; however in smaller amounts the impurities could provide valuable information about several plasma parameters through the use of spectroscopy. Many impurity ions radiate within the extreme ultraviolet (EUV) range. Here, we report on spectra from the silver flat field spectrometer, which was implemented at the Sustained Spheromak Physics experiment (SSPX) to monitor ion impurity emissions. The chamber within the SSPX was made of Cu, which makes M-shell Cu a prominent impurity signature. The Spect3D spectral analysis code was utilized to identify spectral features in the range of 115-315 Å and to more fully understand the plasma conditions. A second set of experiments was carried out on the compact laser-plasma x-ray∕EUV facility "Sparky" at UNR, with Cu flat targets used. The EUV spectra were recorded between 40-300 Å and compared with results from SSPX.

7.
Rev Sci Instrum ; 83(10): 10E103, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126925

RESUMO

Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature (∼10-40 eV) plasmas than emission spectra (∼350-500 eV).

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 2): 046408, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22181284

RESUMO

The influence of an induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches is investigated. An axial magnetic field was induced in a novel Z-pinch load: a double planar wire array with skewed wires (DPWAsk), which represents a planar wire array in an open magnetic configuration. The induced axial magnetic field suppressed magneto-Rayleigh-Taylor (MRT) instabilities (with m = 0 and m = 1 instability modes) in the Z-pinch plasma. The influence of the initial axial magnetic field on the structure of the plasma column at stagnation was manifested through the formation of a more uniform plasma column compared to a standard double planar wire array (DPWA) load [V. L. Kantsyrev et al., Phys. Plasmas 15, 030704 (2008)]. The DPWAsk load is characterized by suppression of MRT instabilities and by the formation of the sub-keV radiation pulse that occurs before the main x-ray peak. Gradients in plasma parameters along the cathode-anode gap were observed and analyzed for DPWAsk loads made from low atomic number Z (Al) and mid-Z (brass) wires.

9.
Rev Sci Instrum ; 82(9): 093506, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974586

RESUMO

This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm < λ < 15 nm) present during harsh wire array z-pinch implosions. The spectrometer utilizes a 25 µm slit, an array of 3 spherical blazed gratings at grazing incidence, and a microchannel plate (MCP) detector placed in an off-Rowland position. Each grating is positioned such that its diffracted radiation is cast over two of the six total independently timed frames of the MCP. The off-Rowland configuration allows for a much greater spectral density on the imaging plate but only focuses at one wavelength per grating. The focal wavelengths are chosen for their diagnostic significance. Testing was conducted at the Zebra pulsed-power generator (1 MA, 100 ns risetime) at the University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer.

10.
Rev Sci Instrum ; 81(10): 10E305, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034004

RESUMO

X-ray spectroscopy of mid-Z metal impurities is important in the study of tokamak plasmas and may reveal potential problems if their contribution to the radiated power becomes substantial. The analysis of the data from a high-resolution x-ray and extreme ultraviolet grating spectrometer, XEUS, installed on NSTX, was performed focused on a detailed study of x-ray spectra in the range 7-18 Å. These spectra include not only commonly seen iron spectra but also copper spectra not yet employed as an NSTX plasma impurity diagnostic. In particular, the L-shell Cu spectra were modeled and predictions were made for identifying contributions from various Cu ions in different spectral bands. Also, similar spectra, but from much denser Cu plasmas produced on the UNR Z-pinch facility and collected using the convex-crystal spectrometer, were analyzed and compared with NSTX results.

11.
Phys Rev Lett ; 104(12): 125001, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366539

RESUMO

An indirect drive configuration is proposed wherein multiple compact Z-pinch x-ray sources surround a secondary hohlraum. Planar compact wire arrays allow reduced primary hohlraum surface area compared to cylindrical loads. Implosions of planar arrays are studied at up to 15 TW x-ray power on Saturn with radiated yields exceeding the calculated kinetic energy, suggesting other heating paths. X-ray power and yield scaling studied from 1-6 MA motivates viewfactor modeling of four 6-MA planar arrays producing 90 eV radiation temperature in a secondary hohlraum.

12.
Phys Rev Lett ; 102(15): 155006, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19518644

RESUMO

Experiments with cylindrical copper wire arrays at the 1-MA Zebra facility show that high temperatures exist in the precursor plasmas formed when ablated wire array material accretes on the axis prior to the stagnation of a z pinch. In these experiments, the precursor radiated approximately 20% of the >1000 eV x-ray output, and time-resolved spectra show substantial emission from Cu L-shell lines. Modeling of the spectra shows an increase in temperature as the precursor forms, up to approximately 450 eV, after which the temperature decreases to approximately 220-320 eV until the main implosion.

13.
Rev Sci Instrum ; 79(10): 10E308, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044470

RESUMO

Diagnostic of high-temperature M-shell W plasmas is challenging because of contribution of numerous ionization stages in a relatively narrow x-ray spectral region. A method using LLNL EBIT data generated at different electron beam energies has been established for the identification of prominent spectral features and for the determination of charge balance in x-ray M-shell W spectra between 3.5 and 8.5 A. It extends previous work [A. S. Safronova et al., Can. J. Phys. 86, 267 (2008)] which used only Ni-like lines to include the neighboring ionization stages. This diagnostic procedure was tested with results from Z-pinch plasmas produced on the 1 MA pulse power generator Zebra at UNR. These results are of particular importance for fusion research.

14.
Rev Sci Instrum ; 79(10): 10E315, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044477

RESUMO

Tracer aluminum alloyed wires (Al5056) are used to provide additional information for x-ray diagnostics of implosions of Cu planar wire arrays (PWAs). Specifically, the analysis of combined PWA experiments using the extensive set of x-ray diagnostics is presented. In these experiments, which were conducted at the 1MA pulsed power generator at University of Nevada, Reno, the Z-pinch load consisted of several (eight) Cu alloyed (main material) and one to two Al alloyed (tracer) wires mounted in a single plane row or double parallel plane rows, single planar wire array (SPWA) or double planar wire array (DPWA), respectively. The analysis of x-ray spatially resolved spectra from the main material indicates the increase in the electron temperature T(e) near the cathode. In general, the axial gradients in T(e) are more pronounced for SPWA than for DPWA due to the more "columnlike" plasma formation for SPWA compared to "hot-spot-like" plasma formation for DPWA. In addition, x-ray spectra from tracer wires are studied, and estimated plasma parameters are compared with those from the main material. It is observed that the x-ray K-shell Al spectra manifest more opacity features for the case of SPWA with about 18% of Al mass (to the total load mass) compared to the case of DPWA with about 11% of Al mass. The analysis of time-gated spectra shows that the relative intensity of the most intense K-shell Al line, small before the x-ray burst, increases with time and peaks close to the maximum of the sub-keV signal.

15.
Rev Sci Instrum ; 79(10): 10F542, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044684

RESUMO

New extreme ultraviolet (EUV) spectroscopic diagnostics of relatively low-temperature plasmas based on the application of an EUV spectrometer and fast EUV diodes combined with glass capillary optics is described. An advanced high resolution dispersive element sliced multilayer grating was used in the compact EUV spectrometer. For monitoring of the time history of radiation, filtered fast EUV diodes were used in the same spectral region (>13 nm) as the EUV spectrometer. The radiation from the plasma was captured by using a single inexpensive glass capillary that was transported onto the spectrometer entrance slit and EUV diode. The use of glass capillary optics allowed placement of the spectrometer and diodes behind the thick radiation shield outside the direction of a possible hard x-ray radiation beam and debris from the plasma source. The results of the testing and application of this diagnostic for a compact laser plasma source are presented. Examples of modeling with parameters of plasmas are discussed.

16.
Rev Sci Instrum ; 79(10): 10F543, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044685

RESUMO

The study of impurities is a key component of magnetic fusion research as it is directly related to plasma properties and steady-state operation. Two of the most important low-Z impurities are carbon and oxygen. The appropriate method of diagnosing these ions in plasmas is extreme ultraviolet (EUV) spectroscopy. In this work the results of two different sets of experiments are considered, and the spectra in a spectral region from 40 to 300 A are analyzed. The first set of experiments was carried out at the Sustained Spheromak Physics Experiment at LLNL, where EUV spectra of oxygen ions were recorded. The second set of experiments was performed at the compact laser-plasma x-ray/EUV facility "Sparky" at UNR. In particular, Mylar and Teflon slabs were used as targets to produce carbon, oxygen, and fluorine ions of different ionization stages. Nonlocal thermodynamic equilibrium kinetic models of O, F, and C were applied to identify the most diagnostically important spectral features of low-Z ions between 40 to 300 A and to provide plasma parameters for both sets of experiments.

17.
Phys Rev Lett ; 100(10): 105003, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18352197

RESUMO

Axially localized NaF dopants are coated onto Al cylindrical wire arrays in order to act as spectroscopic tracers in the stagnated z-pinch plasma. Non-local-thermodynamic-equilibrium kinetic models fit to Na K-shell lines provide an independent measurement of the density and temperature that is consistent with spectroscopic analysis of K-shell emissions from Al and an alloyed Mg dopant. Axial transport of the Na dopant is observed, enabling quantitative study of instabilities in dense z-pinch plasmas.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(2 Pt 2): 026409, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12636824

RESUMO

This paper presents a detailed investigation of the temporal, spatial, and spectroscopic properties of L-shell radiation from 0.8 to 1.0 MA Mo x pinches. Time-resolved measurements of x-ray radiation and both time-gated and time-integrated spectra and pinhole images are presented and analyzed. High-current x pinches are found to have complex spatial and temporal structures. A collisional-radiative kinetic model has been developed and used to interpret L-shell Mo spectra. The model includes the ground state of every ionization stage of Mo and detailed structure for the O-, F-, Ne-, Na-, and Mg-like ionization stages. Hot electron beams generated by current-carrying electrons in the x pinch are modeled by a non-Maxwellian electron distribution function and have significant influence on L-shell spectra. The results of 20 Mo x-pinch shots with wire diameters from 24 to 62 microm have been modeled. Overall, the modeled spectra fit the experimental spectra well and indicate for time-integrated spectra electron densities between 2 x 10(21) and 2 x 10(22) cm(-3), electron temperatures between 700 and 850 eV, and hot electron fractions between 3% and 7%. Time-gated spectra exhibit wide variations in temperature and density of plasma hot spots during the same discharge.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(2 Pt 2): 026603, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11497726

RESUMO

It is shown by using the scalar diffraction theory and the method of images that the arbitrary field confined by the optical waveguide can be generated in free space by the appropriate light source. The correspondence between the guided and free-space waves is illustrated using several particular fields, such as the diffraction-free, self-imaging, ultra-short, solitonlike, partially coherent waves and laser fractals. In opposition to the eigenmode theory of waveguides, the field at the guide entrance can satisfy neither the guide wave-equation nor the boundary conditions.

20.
J Xray Sci Technol ; 7(2): 139-58, 1997 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21307546

RESUMO

In this article, we review current progress in the development of several techniques for extreme ultraviolet, soft x-ray, and x-ray optical instrumentation. Applications of these concepts include diagnostics of hot plasmas, spectroscopic studies of the interaction of multicharged ion beams with matter (atoms, ions, molecules, microstructures, surfaces, solids), and biomedical x-ray microscopy. Novel applications of components include the use of glass capillary converters (GCCs) and multilayer mirrors (MLMs) or crystals. GCC devices provide guiding, focusing, and polarization analysis of short wavelength radiation over a wide bandwidth. The MLM or crystal optical elements can be used for dispersing, focusing, and polarization-sensitive studies of radiation within a narrow bandwidth. In this report we focus on the development and testing of optical diagnostic devices for the short wavelength spectral region 0.1 nm < λ < 100 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...