Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Toxicol ; 24(6): 598-621, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38689163

RESUMO

Cardiovascular diseases (CVDs) can be described as a global health emergency imploring possible prevention strategies. Although the pathogenesis of CVDs has been extensively studied, the role of mitochondrial dysfunction in CVD development has yet to be investigated. Diabetic cardiomyopathy, ischemic-reperfusion injury, and heart failure are some of the CVDs resulting from mitochondrial dysfunction Recent evidence from the research states that any dysfunction of mitochondria has an impact on metabolic alteration, eventually causes the death of a healthy cell and therefore, progressively directing to the predisposition of disease. Cardiovascular research investigating the targets that both protect and treat mitochondrial damage will help reduce the risk and increase the quality of life of patients suffering from various CVDs. One such target, i.e., nuclear sirtuin SIRT6 is strongly associated with cardiac function. However, the link between mitochondrial dysfunction and SIRT6 concerning cardiovascular pathologies remains poorly understood. Although the Role of SIRT6 in skeletal muscles and cardiomyocytes through mitochondrial regulation has been well understood, its specific role in mitochondrial maintenance in cardiomyocytes is poorly determined. The review aims to explore the domain-specific function of SIRT6 in cardiomyocytes and is an effort to know how SIRT6, mitochondria, and CVDs are related.


Assuntos
Doenças Cardiovasculares , Mitocôndrias Cardíacas , Miócitos Cardíacos , Sirtuínas , Sirtuínas/metabolismo , Humanos , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Animais , Miócitos Cardíacos/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/patologia , Transdução de Sinais , Metabolismo Energético/efeitos dos fármacos
2.
Clin Rheumatol ; 43(5): 1421-1433, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499817

RESUMO

Rheumatoid arthritis (RA) and osteoporosis are two chronic disorders that are often seen together. RA is an autoimmune disorder that causes pain and inflammation in the joints, while osteoporosis is a disorder in which the bones become weak and fragile. Risk factors for bone loss in RA include disease activity, longer disease duration, erosive disease, autoantibody positivity, and joint damage leading to impaired physical activity. Recent research has shown that there is a complex interplay between immune cells, cytokines, and bone remodeling processes in both RA and osteoporosis. The bone remodeling process is regulated by cytokines and immune system signaling pathways, with osteoclasts activated through the RANK/RANKL/OPG pathway and the Wnt/DKK1/sclerostin pathway. Understanding these mechanisms can aid in developing targeted therapies for treatment of osteoporosis in RA patients. Current pharmacological approaches include anti-osteoporotic drugs such as bisphosphonates, denosumab, teriparatide, abaloparatide, raloxifene, and romosozumab. Conventional disease-modifying antirheumatic drugs such as methotrexate and biologicals including TNF inhibitors, IL-6 inhibitors, rituximab, and abatacept lower disease activity in RA and can improve bone metabolism by reducing inflammation but have limited impact on bone mineral density. This review will shed light on the relationship between osteoporosis and rheumatoid arthritis as well as the various factors that influence the onset of osteoporosis in RA patients. We also explore several treatment approaches to effectively managing osteoporosis in RA patients.


Assuntos
Antirreumáticos , Artrite Reumatoide , Osteoporose , Humanos , Artrite Reumatoide/complicações , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Antirreumáticos/uso terapêutico , Densidade Óssea , Inflamação/complicações
3.
Artigo em Inglês | MEDLINE | ID: mdl-38275032

RESUMO

It is possible that gut bacteria may have a beneficial effect on cardiovascular health in humans. It may play a major role in the progression of a variety of cardiovascular diseases, including Heart Failure (HF), Atherosclerosis, Coronary Arterial Disease (CAD), Ischemic Heart Disease (IHD), and Others. Dysbiosis of the gut microbiota, along with its direct and indirect impact on gut health, may induce cardiovascular disorders. Although advanced studies have demonstrated the relationship of various metabolites to cardiovascular diseases (CVD) in animals, translating their functional capacity to humans remains a significant area of research. This paper simplifies the demonstration of some compounds, pathways, and components like Trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and butyrate production. It demonstrates how a change in eating habits causes TMAO and how the impact of different drugs on gut microbiota species and high consumption of Westernized food causes several heartrelated problems, such as atherosclerosis and inflammation that can even become the cause of heart failure. Modulation of the gut microbiome, on the other hand, is a novel therapeutic measure because it can be easily altered through diet and other lifestyle changes. It could then be used to lower the risk of several CVDs.

4.
F1000Res ; 12: 107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106650

RESUMO

This review was aimed at summarizing the cellular and molecular mechanisms behind the various pharmacological actions of biochanin-A. Many studies have been reported claiming its application in cancers, metabolic disorders, airway hyperresponsiveness, cardiac disorders, neurological disorders, etc. With regard to hormone-dependent cancers like breast, prostate, and other malignancies like pancreatic, colon, lung, osteosarcoma, glioma that has limited treatment options, biochanin-A revealed agreeable results in arresting cancer development. Biochanin-A has also shown therapeutic benefits when administered for neurological disorders, diabetes, hyperlipidaemia, and other chronic diseases/disorders. Isoflavones are considered phenomenal due to their high efficiency in modifying the physiological functions of the human body. Biochanin-A is one among the prominent isoflavones found in soy (glycine max), red clover (Trifolium pratense), and alfalfa sprouts, etc., with proven potency in modulating vital cellular mechanisms in various diseases. It has been popular for ages among menopausal women in controlling symptoms. In view of the multi-targeted functions of biochanin-A, it is essential to summarize it's mechanism of action in various disorders. The safety and efficacy of biochanin-A needs to be established in clinical trials involving human subjects. Biochanin-A might be able to modify various systems of the human body like the cardiovascular system, CNS, respiratory system, etc. It has shown a remarkable effect on hormonal cancers and other cancers. Many types of research on biochanin-A, particularly in breast, lung, colon, prostate, and pancreatic cancers, have shown a positive impact. Through modulating oxidative stress, SIRT-1 expression, PPAR gamma receptors, and other multiple mechanisms biochanin-A produces anti-diabetic action. The diverse molecular mechanistic pathways involved in the pharmacological ability of biochanin-A indicate that it is a very promising molecule and can play a major impact in modifying several physiological functions.


Assuntos
Isoflavonas , Neoplasias , Masculino , Feminino , Humanos , Isoflavonas/farmacologia , Glycine max , Neoplasias/tratamento farmacológico
5.
J Mass Spectrom ; 58(8): e4964, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37464563

RESUMO

Phlorizin (PRZ) is a natural product that belongs to a class of dihydrochalcones. The unique pharmacological property of PRZ is to block glucose absorption or reabsorption through specific and competitive inhibitors of the sodium/glucose cotransporters (SGLTs) in the intestine (SGLT1) and kidney (SGLT2). This results in glycosuria by inhibiting renal reabsorption of glucose and can be used as an adjuvant treatment for type 2 diabetes. The pharmacokinetic profile, metabolites of the PRZ, and efficacy of metabolites towards SGLTs are unknown. Therefore, the present study on the characterization of hitherto unknown in vivo metabolites of PRZ and pharmacokinetic profiling using liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS) and accurate mass measurements is undertaken. Plasma, urine, and feces samples were collected after oral administration of PRZ to Sprague-Dawley rats to identify in vivo metabolites. Furthermore, in silico efficacy of the identified metabolites was evaluated by docking study. PRZ at an intraperitoneal dose of 400 mg/kg showed maximum concentration in the blood to 439.32 ± 8.84 ng/mL at 1 h, while phloretin showed 14.38 ± 0.33 ng/mL at 6 h. The pharmacokinetic profile of PRZ showed that the maximum concentration lies between 1 and 2 h after dosing. Decreased blood glucose levels and maximum excretion of glucose in the urine were observed when the PRZ and metabolites were observed in plasma. The identification and characterization of PRZ metabolites by LC/ESI/MS/MS further revealed that the phase I metabolites of PRZ are hydroxy (mono-, di-, and tri-) and reduction. Phase II metabolites are O-methylated, O-acetylated, O-sulfated, and glucuronide metabolites of PRZ. Further docking study revealed that the metabolites diglucuronide metabolite of mono-hydroxylated PRZ and mono-glucuronidation of PRZ could be considered novel inhibitors of SGLT1 and SGLT2, respectively, which show better binding affinities than their parent compound PRZ and the known inhibitors.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Ratos , Animais , Ratos Sprague-Dawley , Hipoglicemiantes/farmacologia , Espectrometria de Massas em Tandem/métodos , Transportador 2 de Glucose-Sódio , Florizina/farmacologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Glucose/metabolismo , Sódio , Cromatografia Líquida de Alta Pressão/métodos
6.
Vaccines (Basel) ; 11(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36851139

RESUMO

Atherosclerosis is the formation of plaque within arteries due to overt assemblage of fats, cholesterol and fibrous material causing a blockage of the free flow of blood leading to ischemia. It is harshly impinging on health statistics worldwide because of being principal cause of high morbidity and mortality for several diseases including rheumatological, heart and brain disorders. Atherosclerosis is perpetuated by pro-inflammatory and exacerbated by pro-coagulatory mediators. Besides several other pathways, the formation of neutrophil extracellular traps (NETs) and the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome contribute significantly to the initiation and propagation of atherosclerotic plaque for its worst outcomes. The present review highlights the contribution of these two disturbing processes in atherosclerosis, inflammation and atherothrombosis in their individual as well as collaborative manner.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35761484

RESUMO

The gut microbiome consists of trillions of bacteria and other microbes whose metabolic activities and interactions with the immune system go beyond the gut itself. We are all aware that bacteria and other microorganisms have a significant impact on our health. Also, the health of the bacteria directly reflects the health status of the body where they reside. Eventually, alterations in the microbiome at different sites of a body are associated with many different diseases such as obesity, IBD, malnutrition, CVD, etc. Microbiota directly or indirectly affects the heart with the formation of plaques in the blood vessels, and cell walls become prone to lesion development. This ultimately leads to heightening the overall inflammatory status via increased bacterial translocation. Metabolites derived from the gut microbial metabolism of choline, phosphatidylcholine, and L-carnitine directly contribute to CVD pathology. These dietary nutrients have trimethylamine (TMA) moiety, which participates in the development of atherosclerotic heart disease. The objective of this review was to examine various metabolic pathways regulated by the gut microbiome that appear to alter heart function and lead to the development and progression of cardiovascular diseases, as well as how to target the gut microbiome for a healthier heart. In this review, we also discussed various clinical drugs having crosstalk between microbiota and heart and clinical trials for the gut-heart microbiome.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Microbiota , Humanos , Dieta , Sistema Imunitário
8.
Biomedicines ; 10(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35203540

RESUMO

There are substantial shortcomings in the drugs currently available for treatment of type 2 diabetes mellitus. The global diabetic crisis has not abated despite the introduction of new types of drugs and targets. Persistent unaddressed patient needs remain a significant factor in the quest for new leads in routine studies. Drug discovery methods in this area have followed developments in the market, contributing to a recent rise in the number of molecules. Nevertheless, troubling developments and fresh challenges are still evident. Recently, metformin, the most widely used first-line drug for diabetes, was found to contain a carcinogenic contaminant known as N-nitroso dimethylamine (NDMA). Therefore, purity and toxicity are also a big challenge for drug discovery and development. Moreover, newer drug classes against SGLT-2 illustrate both progress and difficulties. The same was true previously in the case of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Furthermore, researchers must study the importance of mechanistic characteristics of novel compounds, as well as exposure-related hazardous aspects of current and newly identified protein targets, in order to identify new pharmacological molecules with improved selectivity and specificity.

9.
Mini Rev Med Chem ; 22(16): 2102-2123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35105287

RESUMO

The SARS-CoV-2 enters the human airways and comes into contact with the mucous membranes lining the mouth, nose, and eyes. The virus enters the healthy cells and uses cell machinery to make several copies itself. Critically ill patients infected with SARS-CoV-2 may have damaged lungs, air sacs, lining, and walls. Since COVID-19 causes cytokine storm, it damages the alveolar cells of the lungs and fills them with fluid, making it harder to exchange oxygen and carbon dioxide. The SARS-CoV-2 infection causes a range of complications, including mild to critical breathing difficulties. It has been observed that older people suffering from health conditions like cardiomyopathies, nephropathies, metabolic syndrome, and diabetes instigate severe symptoms. Many people who died due to COVID-19 had impaired metabolic health [IMH], characterized by hypertension, dyslipidemia, and hyperglycemia, i.e., diabetes, cardiovascular system, and renal diseases, making their retrieval challenging. Jeopardy stresses for increased mortality from COVID-19 include older age, COPD, ischemic heart disease, diabetes mellitus, and immunosuppression. However, no targeted therapies are available as of now. Almost two-thirds of diagnosed coronavirus patients had cardiovascular diseases and diabetes, out of which 37% were under 60. The NHS audit revealed that with a higher expression of ACE-2 receptors, viral particles could easily bind their protein spikes and get inside the cells, finally causing COVID-19 infection. Hence, people with IMH are more prone to COVID-19 and, ultimately, comorbidities. This review provides enormous information about tissue [lungs, heart, and kidneys] damage, pathophysiological changes, and impaired metabolic health of SARS-CoV-2 infected patients. Moreover, it also designates the possible therapeutic targets of COVID-19 and drugs which can be used against these targets.


Assuntos
Tratamento Farmacológico da COVID-19 , Diabetes Mellitus , Idoso , Enzima de Conversão de Angiotensina 2 , Animais , Diabetes Mellitus/tratamento farmacológico , Humanos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2
10.
J Ayurveda Integr Med ; 13(1): 100503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34974956

RESUMO

BACKGROUND: Chronic administration of steroids like dexamethasone produces symptoms including weight loss and skeletal muscle dysfunction. Similar events are reported in chronic or high-intensity exercises, that can lead to fatigue and muscle damage. OBJECTIVE: In the present study, the effect of Moringa oleifera leaf extract was evaluated against dexamethasone (Dex) and exercise (Exe)-induced muscle changes in rats. MATERIALS AND METHODS: Six groups each containing 6 rats, namely normal, Dex control, Exe Control, Dex + M. oleifera leaf extract (300mg/kgp.o.), Dex + Exe, Dex + Exe + M. oleifera leaf extract were assessed in the study. Dex was administered at 0.6 mg/kg i.p. daily for 7 days. Exercise was given for a total of 10 days after 30 minutes of dosing using treadmill equipment for 900 seconds at speed 18 m/min. Animals were assessed for variation in body weight, muscular endurance using treadmill, locomotor activity using actophotometer, motor coordination using rotarod on day zero, and day seven. Hemidiaphragm of rats were isolated and used for evaluation of the glucose uptake. Gastrocnemius muscle was isolated and subjected to hematoxylin and eosin staining. RESULTS: Dex and Exe control animals showed a significant decrease in skeletal muscle activity when compared to normal control animals in the actophotometer test. Improvement in endurance were seen in Dex + M. oleifera leaf extract, and Dex + exercise + M. oleifera leaf extract groups compared to Dex control group. Improvement in locomotor activity was seen in Dex group subjected to exercise and was significant when treated with M. oleifera leaf extract. Histology reports were in accordance with the functional parameters. CONCLUSION: M. oleifera leaf extract supplemented with exercise showed a reversal in the dexamethasone-induced functional impairment in skeletal muscles.

11.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360945

RESUMO

Mitochondria are vital intracellular organelles that play an important role in regulating various intracellular events such as metabolism, bioenergetics, cell death (apoptosis), and innate immune signaling. Mitochondrial fission, fusion, and membrane potential play a central role in maintaining mitochondrial dynamics and the overall shape of mitochondria. Viruses change the dynamics of the mitochondria by altering the mitochondrial processes/functions, such as autophagy, mitophagy, and enzymes involved in metabolism. In addition, viruses decrease the supply of energy to the mitochondria in the form of ATP, causing viruses to create cellular stress by generating ROS in mitochondria to instigate viral proliferation, a process which causes both intra- and extra-mitochondrial damage. SARS-COV2 propagates through altering or changing various pathways, such as autophagy, UPR stress, MPTP and NLRP3 inflammasome. Thus, these pathways act as potential targets for viruses to facilitate their proliferation. Autophagy plays an essential role in SARS-COV2-mediated COVID-19 and modulates autophagy by using various drugs that act on potential targets of the virus to inhibit and treat viral infection. Modulated autophagy inhibits coronavirus replication; thus, it becomes a promising target for anti-coronaviral therapy. This review gives immense knowledge about the infections, mitochondrial modulations, and therapeutic targets of viruses.


Assuntos
Autofagia , COVID-19/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Animais , Autofagia/efeitos dos fármacos , Humanos , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Viroses/tratamento farmacológico , Viroses/metabolismo , Tratamento Farmacológico da COVID-19
12.
Front Pharmacol ; 11: 598326, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33442387

RESUMO

Sirtuins, NAD + dependent proteins belonging to class III histone deacetylases, are involved in regulating numerous cellular processes including cellular stress, insulin resistance, inflammation, mitochondrial biogenesis, chromatin silencing, cell cycle regulation, transcription, and apoptosis. Of the seven mammalian sirtuins present in humans, Sirt6 is an essential nuclear sirtuin. Until recently, Sirt6 was thought to regulate chromatin silencing, but new research indicates its role in aging, diabetes, cardiovascular disease, lipid metabolism, neurodegenerative diseases, and cancer. Various murine models demonstrate that Sirt6 activation is beneficial in alleviating many disease conditions and increasing lifespan, showing that Sirt6 is a critical therapeutic target in the treatment of various disease conditions in humans. Sirt6 also regulates the pathogenesis of multiple diseases by acting on histone proteins and non-histone proteins. Endogenous and non-endogenous modulators regulate both activation and inhibition of Sirt6. Few Sirt6 specific non-endogenous modulators have been identified. Hence the identification of Sirt6 specific modulators may have potential therapeutic roles in the diseases described above. In this review, we describe the development of Sirt6, the role it plays in the human condition, the functional role and therapeutic importance in disease processes, and specific modulators and molecular mechanism of Sirt6 in the regulation of metabolic homeostasis, cardiovascular disease, aging, and neurodegenerative disease.

13.
FASEB J ; 33(10): 10872-10888, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31318577

RESUMO

Sirtuins (Sirts) are implicated in regulating a myriad of biologic functions ranging from cell growth and metabolism to longevity. Here, we show that nuclear Sirt, Sirt6, and mitochondrial Sirt, Sirt3, regulate each other's activity and protect the heart from developing diabetic cardiomyopathy. We found that expression of both Sirt6 and Sirt3 was reduced in cardiomyocytes treated with palmitate and in hearts of mice fed with a high-fat, high-sucrose (HF-HS) diet to develop obesity and diabetes. Conversely, whole-body overexpressing Sirt6 transgenic (Tg.Sirt6) mice were protected from developing obesity and insulin resistance when fed with the same HF-HS diet. The hearts of Tg.Sirt6 mice were also protected from mitochondrial fragmentation and decline of Sirt3, resulting otherwise from HF-HS diet feeding. Mechanistic studies showed that Sirt3 preserves Sirt6 levels by reducing oxidative stress, whereas Sirt6 maintains Sirt3 levels by up-regulating nuclear respiratory factor 2 (Nrf2)-dependent Sirt3 gene transcription. We found that Sirt6 regulates Nrf2-mediated cardiac gene expression in 2 ways; first, Sirt6 suppresses expression of Kelch-like ECH-associated protein 1 (Keap1), a negative regulator of Nrf2, and second, Sirt6 binds to Nrf2 and antagonizes its interaction with Keap1, thereby stabilizing Nrf2 levels in cardiomyocytes. Together, these studies demonstrate that Sirt6 and Sirt3 maintain each other's activity and protect the heart from developing diabetic cardiomyopathy.-Kanwal, A., Pillai, V. B., Samant, S., Gupta, M., Gupta, M. P. The nuclear and mitochondrial sirtuins, Sirt6 and Sirt3, regulate each other's activity and protect the heart from developing obesity-mediated diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas/metabolismo , Obesidade/metabolismo , Sirtuína 3/metabolismo , Sirtuínas/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Cardiomiopatias Diabéticas/complicações , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/complicações , Obesidade/etiologia , Estresse Oxidativo , Ligação Proteica , Ratos , Sirtuína 3/genética , Sirtuínas/genética
15.
Sci Rep ; 7(1): 11877, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928419

RESUMO

Muscle wasting, also known as cachexia, is associated with many chronic diseases, which worsens prognosis of primary illness leading to enhanced mortality. Molecular basis of this metabolic syndrome is not yet completely understood. SIRT6 is a chromatin-bound member of the sirtuin family, implicated in regulating many cellular processes, ranging from metabolism, DNA repair to aging. SIRT6 knockout (SIRT6-KO) mice display loss of muscle, fat and bone density, typical characteristics of cachexia. Here we report that SIRT6 depletion in cardiac as well as skeletal muscle cells promotes myostatin (Mstn) expression. We also observed upregulation of other factors implicated in muscle atrophy, such as angiotensin-II, activin and Acvr2b, in SIRT6 depleted cells. SIRT6-KO mice showed degenerated skeletal muscle phenotype with significant fibrosis, an effect consistent with increased levels of Mstn. Additionally, we observed that in an in vivo model of cancer cachexia, Mstn expression coupled with downregulation of SIRT6. Furthermore, SIRT6 overexpression downregulated the cytokine (TNFα-IFNγ)-induced Mstn expression in C2C12 cells, and promoted myogenesis. From the ChIP assay, we found that SIRT6 controls Mstn expression by attenuating NF-κB binding to the Mstn promoter. Together, these data suggest a novel role for SIRT6 in maintaining muscle mass by controlling expression of atrophic factors like Mstn and activin.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Miocárdio/metabolismo , Miostatina/biossíntese , Sirtuínas/metabolismo , Regulação para Cima , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Ativinas/genética , Ativinas/metabolismo , Angiotensina II/genética , Angiotensina II/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Miostatina/genética , NF-kappa B/genética , Ratos , Elementos de Resposta , Sirtuínas/genética
16.
Org Biomol Chem ; 15(28): 6057, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28686256

RESUMO

Correction for 'Synthesis of l-rhamnose derived chiral bicyclic triazoles as novel sodium-glucose transporter (SGLT) inhibitors' by Siddamal Reddy Putapatri et al., Org. Biomol. Chem., 2014, 12, 8415-8421.

17.
Oncotarget ; 8(21): 34082-34098, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28423723

RESUMO

Doxorubicin is the chemotherapeutic drug of choice for a wide variety of cancers, and cardiotoxicity is one of the major side effects of doxorubicin treatment. One of the main cellular targets of doxorubicin in the heart is mitochondria. Mitochondrial sirtuin, SIRT3 has been shown to protect against doxorubicin-induced cardiotoxicity. We have recently identified honokiol (HKL) as an activator of SIRT3, which protects the heart from developing pressure overload hypertrophy. Here, we show that HKL-mediated activation of SIRT3 also protects the heart from doxorubicin-induced cardiac damage without compromising the tumor killing potential of doxorubicin. Doxorubicin-induced cardiotoxicity is associated with increased ROS production and consequent fragmentation of mitochondria and cell death. HKL-mediated activation of SIRT3 prevented Doxorubicin induced ROS production, mitochondrial damage and cell death in rat neonatal cardiomyocytes. HKL also promoted mitochondrial fusion. We also show that treatment with HKL blocked doxorubicin-induced cardiac toxicity in mice. This was associated with reduced mitochondrial DNA damage and improved mitochondrial function. Furthermore, treatments of mice, bearing prostrate tumor-xenografts, with HKL and doxorubicin showed inhibition of tumor growth with significantly reduced cardiac toxicity. Our results suggest that HKL-mediated activation of SIRT3 protects the heart from doxorubicin-induced cardiotoxicity and represents a potentially novel adjunct for chemotherapy treatments.


Assuntos
Compostos de Bifenilo/administração & dosagem , Cardiomiopatias/prevenção & controle , Doxorrubicina/efeitos adversos , Lignanas/administração & dosagem , Mitocôndrias Cardíacas/efeitos dos fármacos , Animais , Compostos de Bifenilo/farmacologia , Cardiomiopatias/induzido quimicamente , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Lignanas/farmacologia , Camundongos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3 , Regulação para Cima
18.
Am J Physiol Lung Cell Mol Physiol ; 312(1): L68-L78, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815257

RESUMO

Myofibroblast differentiation is a key process in the pathogenesis of fibrotic diseases. Transforming growth factor-ß1 (TGF-ß1) is a powerful inducer of myofibroblast differentiation and is implicated in pathogenesis of tissue fibrosis. This study was undertaken to determine the role of mitochondrial deacetylase SIRT3 in TGF-ß1-induced myofibroblast differentiation in vitro and lung fibrosis in vivo. Treatment of human lung fibroblasts with TGF-ß1 resulted in increased expression of fibrosis markers, smooth muscle α-actin (α-SMA), collagen-1, and fibronectin. TGF-ß1 treatment also caused depletion of endogenous SIRT3, which paralleled with increased production of reactive oxygen species (ROS), DNA damage, and subsequent reduction in levels of 8-oxoguanine DNA glycosylase (OGG1), an enzyme that hydrolyzes oxidized guanine (8-oxo-dG) and thus protects DNA from oxidative damage. Overexpression of SIRT3 by adenovirus-mediated transduction reversed the effects of TGF-ß1 on ROS production and mitochondrial DNA damage and inhibited TGF-ß1-induced myofibroblast differentiation. To determine the antifibrotic role of SIRT3 in vivo, we used the bleomycin-induced mouse model of pulmonary fibrosis. Compared with wild-type controls, Sirt3-knockout mice showed exacerbated fibrosis after intratracheal instillation of bleomycin. Increased lung fibrosis was associated with decreased levels of OGG1 and concomitant accumulation of 8-oxo-dG and increased mitochondrial DNA damage. In contrast, the transgenic mice with whole body Sirt3 overexpression were protected from bleomycin-induced mtDNA damage and development of lung fibrosis. These data demonstrate a critical role of SIRT3 in the control of myofibroblast differentiation and lung fibrosis.


Assuntos
Diferenciação Celular , Dano ao DNA , DNA Mitocondrial/metabolismo , Miofibroblastos/patologia , Fibrose Pulmonar/patologia , Sirtuína 3/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Biomarcadores/metabolismo , Bleomicina , Células Cultivadas , Colágeno Tipo I/metabolismo , Citoproteção/efeitos dos fármacos , DNA/metabolismo , DNA Glicosilases/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Humanos , Camundongos Knockout , Modelos Biológicos , Miofibroblastos/metabolismo , Fibrose Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
19.
Drug Des Devel Ther ; 10: 2929-2938, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695290

RESUMO

The concept of cardioprotection through preconditioning against ischemia-reperfusion (I/R) injury is well known and established. However, among different proposed mechanisms regarding the concept of ischemic preconditioning, protein kinase C (PKC)-mediated cardioprotection through ischemic preconditioning plays a key role in myocardial I/R injury. Thus, this study was designed to find the relationship between PKC and sodium glucose transporter 1 (SGLT1) in preconditioning-induced cardioprotection, which is ill reported till now. By applying a multifaceted approach, we demonstrated that PKC activates SGLT1, which curbed oxidative stress and apoptosis against I/R injury. PKC activation enhances cardiac glucose uptake through SGLT1 and seems essential in preventing I/R-induced cardiac injury, indicating a possible cross-talk between PKC and SGLT1.


Assuntos
Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Proteína Quinase C/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Ativação Enzimática , Humanos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo , Proteína Quinase C/química , Transdução de Sinais , Transportador 1 de Glucose-Sódio/química
20.
Biochem Biophys Res Commun ; 472(2): 392-8, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26920054

RESUMO

BACKGROUND: Recently, we reported Na+/glucose co-transporter (SGLT1) expression in mouse and human heart. We speculated that SGLT1 might play an important role in ischemic preconditioning-induced cardioprotection. Therefore, the present study was designed to find the role of SGLT1 in ischemic preconditioning-induced cardioprotection. METHODS: Hearts isolated from SD male rats were subjected to either ischemia-reperfusion injury (I/R) (15 min global ischemia followed by 20 min reperfusion) or ischemic preconditioning (IPC) (3 cycles of 2 min global ischemia separated by 3 min reperfusion) followed by I/R in presence and absence of phlorizin, an SGLT1 inhibitor. RESULTS: IPC increased membrane SGLT1 expression in rat heart as observed by immunoblotting and immunohistochemistry. Hearts from I/R group showed significant increase in oxidative stress levels and marked myocardial injury as compared to control. We also observed significant increase in apoptotic parameters in I/R heart, as measured by caspase-3 activity, TUNEL positive nuclei and gene expression analysis. Significant improvement in oxidative stress, apoptosis parameters and cardiac injury was observed in I/R hearts when subjected to IPC. However, all beneficial effects of preconditioning were lost when hearts were pre-treated with phlorizin. CONCLUSION: Present study indicated that inhibition of SGLT1 by phlorizin abrogated the beneficial effect of ischemic-preconditioning and for the first time, provides evidence that SGLT1 plays a crucial role in ischemic preconditioning-induced cardioprotection.


Assuntos
Precondicionamento Isquêmico Miocárdico/métodos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...