Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Heliyon ; 6(7): e04364, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32695901

RESUMO

Chromium toxicity is considered as a major problem for agricultural soil that reduced crop productivity by affecting photosynthetic tissues. Exogenous application of melatonin can alleviate the adverse effects of chromium toxicity on plant growth. However, little is known about its effect on thylakoidal protein complexes responsible for conversion of solar energy to biochemical energy. Chlorophyll fluorescence a transients considered one of the best non-invasive and rapid method for the evaluation of photosynthetic (Photosystem II) efficiency of plants and plant health under environmental stress conditions. In the present study, three-week old plants of two canola cultivars AC-Excel and DGL were applied to melatonin (0, 1, 5, 10 µM) when grown under chromium stress (0, 50 and 100 µM) for further two weeks. Chromium stress reduced the growth (fresh and dry weights of shoots and roots) of both canola cultivars and exogenous application of 5 and 10 µM melatonin improved the growth of canola at 50 or 100 µM chromium stress. This improvement was greater in cv DGL than in AC-Excel. Increasing chromium decreased the photosynthetic pigments (chlorophyll a and chlorophyll b). However, 5 and 10 µM melatonin application improved chlorophyll a at 50 µM chromium stress. Structural stability and efficiency of photosystem II (PSII) measured as performance index (PIABS) and ratios of fluorescence (Fv/Fm, Fv/Fo) Fv decreased due to chromium stress. JIP-test parameters showed that chromium stress increased the absorption and trapping fluxes with decrease in electron transport fluxes which caused the damage to reaction centers (RC), detachment of oxygen evolving complex (OEC) from RC or inefficiency of electron transfer from OEC to RC. Such adverse effects were greater in cv AC-Excel. However exogenous application of melatonin improved PIABS, electron transport per reaction center (ET/RC), reduced variable fluorescence at J step (VJ) reflecting melatonin protected PSII from chromium stress induced damage by protecting OEC. Thus, OJIP fluorescence transients are quite helpful for understanding the intersystem electron transport beyond photosystem II in canola cultivars due to melatonin application under chromium stress. FINDINGS: Exogenous application of melatonin alleviated toxic effects of chromium on plant growth of canola by modulating photosynthesis, enhanced photosystem II efficiency and regulation of electron transport flux to protect photo-inhibition of PSII from oxidative damage.

2.
Phys Med ; 31(8): 1080-1084, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26431578

RESUMO

PURPOSE: This study aims at the assessment of dose error in patients undergoing radiotherapy due to treatment couch of Co-60 teletherapy unit. MATERIALS AND METHODS: In this study beam attenuation due to treatment couch of Co-60 unit was measured in air for different gantry angles and field sizes. Polymethylmethacrylate (PMMA) phantom was used to estimate the effect of depth on attenuation. Impact of couch on surface dose was also evaluated. RESULTS: Beam attenuation due to couch was in the range of 0.5-28% for different gantry angles with standard field size of 10 × 10 cm(2) with optimum position of metallic cranks. Maximum attenuation (29%) was observed with smallest field size i.e. 5 × 5 cm(2). Beam attenuation has been found higher in phantom as compared to that in air However, no particular trend of attenuation has been noted with varying depth of phantom. A 6% increase in surface dose has also been observed due to couch insertion for normal beam incidence. Maximum error of 80% is also note-worthy for most unfavorable situation of irradiation at 180 degree through the metallic cranks. CONCLUSION: It has been determined that ignoring the treatment couch and its accessories can result in dose error of 0.5-80%, depending on gantry angle, field size and position of couch accessories. Therefore, consideration of dose error due to couch during treatment planning is recommended.


Assuntos
Nylons , Doses de Radiação , Teleterapia por Radioisótopo/instrumentação , Erros de Configuração em Radioterapia , Dosagem Radioterapêutica , Pele/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...