Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(2): 1189-1203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705960

RESUMO

Alginate is a major extra polymeric substance in the biofilm formed by mucoid Pseudomonas aeruginosa. It is the main proven perpetrator of lung infections in patients suffering from cystic fibrosis. Alginate lyases are very important in the treatment of cystic fibrosis. This study evaluated the role of standalone and in conjugation, effect of alginate lyase of SG4 + isolated from Paenibacillus lautus in enhancing in vitro bactericidal activity of gentamicin and amikacin on mucoid P. aeruginosa. Using Response Surface Methodology (RSM) alginate lyase SG4 + production was optimized in shake flask and there 8.49-fold enhancement in enzyme production. In fermenter, maximum growth (10.15 mg/ml) and alginate lyase (1.46 International Units) production, 1.71-fold was increased using Central Composite Design (CCD). Further, fermentation time was reduced from 48 to 20 h. To the best of our knowledge this is the first report in which CCD was used for fermenter studies to optimize alginate lyase production. The Km and Vmax of purified enzyme were found to be 2.7 mg/ml and 0.84 mol/ml-min, respectively. The half-life (t 1/2) of purified alginate lyase SG4 + at 37 °C was 180 min. Alginate lyase SG4 + in combination with gentamicin and amikacin eradiated 48.4- 52.3% and 58- 64.6%, alginate biofilm formed by P. aeruginosa strains, respectively. The study proves that alginate lyase SG4 + has excellent exopolysaccharide disintegrating ability and may be useful in development of potent therapeutic agent to treat P. aeruginosa biofilms.


Assuntos
Antibacterianos , Biofilmes , Paenibacillus , Polissacarídeo-Liases , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/genética , Antibacterianos/farmacologia , Paenibacillus/genética , Paenibacillus/enzimologia , Paenibacillus/efeitos dos fármacos , Gentamicinas/farmacologia , Amicacina/farmacologia , Fermentação , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Alginatos/metabolismo
2.
3 Biotech ; 6(2): 183, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330255

RESUMO

Ascorbyl palmitate was synthesized using a Celite-immobilized commercial lipase (Lipolase 100L) in dimethylsulfoxide (DMSO) as an organic solvent system. Lipase immobilized by surface adsorption onto Celite 545 matrix and subsequently exposed to 1 % glutaraldehyde showed 75 % binding of protein. The Celite-bound lipase was optimally active at 75 °C and pH 8.5 under shaking and showed maximum hydrolytic activity toward p-NPP as a substrate. The bound lipase was found to be stimulated only in the presence of Al3+ and EDTA. All surfactants (Tween-20, Tween-80 and Triton X-100) had an inhibitory effect on lipase activity. The optimization of various reaction conditions of ascorbyl palmitate was achieved considering one factor at a time. The esterification of ascorbic acid and palmitic acid was carried out with 1 M ascorbic acid and 2.5 M palmitic acid in DMSO at 75 °C for 18 h under shaking (120 rpm). Molecular sieves had an important effect on the ester synthesis resulting in an enhanced yield. The by-product (H2O) produced in the reaction was scavenged by the molecular sieves (20 mg/ml) added in the reaction mixture which enhanced the ester yield to 80 %. The characterization of synthesized ester was done through FTIR spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...