Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 139: 123-131, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30905778

RESUMO

N-glycosylation is a common post-translational modification of biopharmaceutical products. Certain types of N-glycans have been shown to influence important properties of monoclonal antibody products including pharmacokinetics and effector functions. Complex biopharmaceuticals e.g. Fc fusion proteins may contain several N- and O-glycosylation sites. Domain specific characterization of two Fc fusion proteins showed an Fc N-glycosylation pattern comparable to IgG molecules. The receptor N-glycosylation was found to contain some larger and more complex N-glycans compared to the Fc part. Analyses of samples from non-clinical studies of the two studied fusion proteins indicate that their N-glycans impact pharmacokinetic properties. Interestingly, besides the type of N-glycan this influence on the pharmacokinetics depends also on the glycosylation site and thus the accessibility on the protein. The same type of N-glycan can influence the clearance of fusion proteins when located at the receptor part, but not if located at the Fc part. In this study, it is shown that N-glycans with terminal galactose or N-acetylglucosamine residues have a negative impact on serum half-life when located at the receptor part. Terminal sialylation of galactose residues prevents this faster clearance even when only one sialic acid is present. O-acetylation, a modification of sialic acids does not impact pharmacokinetics. Thus, type and accessibility of N-glycan moieties of fusion proteins both play an important role in pharmacokinetics. Finally, detailed site specific analysis is critical in the development of biopharmaceuticals.


Assuntos
Anticorpos Monoclonais/farmacocinética , Produtos Biológicos/farmacocinética , Fragmentos Fc das Imunoglobulinas/farmacologia , Polissacarídeos/química , Proteínas Recombinantes de Fusão/farmacocinética , Acetilglucosamina/química , Anticorpos Monoclonais/química , Produtos Biológicos/química , Glicosilação , Meia-Vida , Fragmentos Fc das Imunoglobulinas/química , Proteínas Recombinantes de Fusão/química
2.
Mol Neuropsychiatry ; 2(1): 46-59, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27606320

RESUMO

Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder. Several studies have attempted to characterize molecular alterations associated with PTSD, but most findings were limited to the investigation of specific cellular markers in the periphery or defined brain regions. In the current study, we aimed to unravel affected molecular pathways/mechanisms in the fear circuitry associated with PTSD. We interrogated a foot shock-induced PTSD mouse model by integrating proteomics and metabolomics profiling data. Alterations at the proteome level were analyzed using in vivo (15)N metabolic labeling combined with mass spectrometry in the prelimbic cortex (PrL), anterior cingulate cortex (ACC), basolateral amygdala, central nucleus of the amygdala and CA1 of the hippocampus between shocked and nonshocked (control) mice, with and without fluoxetine treatment. In silico pathway analyses revealed an upregulation of the citric acid cycle pathway in PrL, and downregulation in ACC and nucleus accumbens (NAc). Chronic fluoxetine treatment prevented decreased citric acid cycle activity in NAc and ACC and ameliorated conditioned fear response in shocked mice. Our results shed light on the role of energy metabolism in PTSD pathogenesis and suggest potential therapy through mitochondrial targeting.

3.
J Psychiatr Res ; 76: 74-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26897419

RESUMO

Despite intense research efforts the molecular mechanisms affecting stress-vulnerable brain regions in posttraumatic stress disorder (PTSD) remain elusive. In the current study we have applied global transcriptomic profiling to a PTSD mouse model induced by foot shock fear conditioning. We compared the transcriptomes of prelimbic cortex, anterior cingulate cortex (ACC), basolateral amygdala, central nucleus of amygdala, nucleus accumbens (NAc) and CA1 of the dorsal hippocampus between shocked and non-shocked (control) mice, with and without fluoxetine treatment by RNA sequencing. Differentially expressed (DE) genes were identified and clustered for in silico pathway analysis. Findings in relevant brain regions were further validated with immunohistochemistry. DE genes belonging to 11 clusters were identified including increased inflammatory response in ACC in shocked mice. In line with this finding, we noted higher microglial activation in ACC of shocked mice. Chronic fluoxetine treatment initiated in the aftermath of the trauma prevented inflammatory gene expression alterations in ACC and ameliorated PTSD-like symptoms, implying an important role of the immune response in PTSD pathobiology. Our results provide novel insights into molecular mechanisms affected in PTSD and suggest therapeutic applications with anti-inflammatory agents.


Assuntos
Antidepressivos de Segunda Geração/uso terapêutico , Fluoxetina/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/etiologia , Inflamação/prevenção & controle , Transtornos de Estresse Pós-Traumáticos/complicações , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Eletrochoque/efeitos adversos , Medo/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , RNA Mensageiro/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Mol Neuropsychiatry ; 1(1): 60-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-27602357

RESUMO

Microdialysis is a powerful method for in vivo neurochemical analyses. It allows fluid sampling in a dynamic manner in specific brain regions over an extended period of time. A particular focus has been the neurochemical analysis of extracellular fluids to explore central nervous system functions. Brain microdialysis recovers neurotransmitters, low-molecular-weight neuromodulators and neuropeptides of special interest when studying behavior and drug effects. Other small molecules, such as central metabolites, are typically not assessed despite their potential to yield important information related to brain metabolism and activity in selected brain regions. We have implemented a liquid chromatography online mass spectrometry metabolomics platform for an expanded analysis of mouse brain microdialysates. The method is sensitive and delivers information for a far greater number of analytes than commonly used electrochemical and fluorescent detection or biochemical assays. The metabolomics platform was applied to the analysis of microdialysates in a foot shock-induced mouse model of posttraumatic stress disorder (PTSD). The rich metabolite data information was then used to delineate affected prefrontal molecular pathways that reflect individual susceptibility for developing PTSD-like symptoms. We demonstrate that hypothesis-free metabolomics can be adapted to the analysis of microdialysates for the discovery of small molecules with functional significance.

5.
J Chin Med Assoc ; 76(5): 258-64, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23683258

RESUMO

BACKGROUND: Nitric oxide (NO) donors have been reported to induce choleresis via an increased excretion of glutathione. The effects of another gas molecule, carbon monoxide (CO), on bile formation are, however, inconsistent among previous reports. We investigated the sequential changes of bile output and the biliary contents in rats with or without CO supplementation to elucidate the mechanism of CO on bile excretion. METHODS: Dichloromethane (DCM) was gastrically fed to male Sprague-Dawley rats to yield CO by liver biotransformation. The rats were divided into DCM-treated (n = 7), DCM plus L-NAME-treated (n = 6), and corn oil-treated-(n = 8) groups. Bile samples were collected hourly to examine the flow rate and bile content. Serum levels of nitrite and nitrate 4 hours after DCM supplementation with or without NO synthase (NOS) inhibition were measured by capillary electrophoresis. The expression of hepatic inducible NOS was evaluated by Western blotting 6 hours after DCM administration. RESULTS: Levels of carboxyhemoglobin rose to around 10% at 4 hours after DCM supplementation and were maintained until the end of the experiments. Bile flow increased after DCM supplementation and was associated with a concomitant increase of biliary glutathione and higher hepatic multidrug resistance-associated protein 2 (Mrp2) expression. Hepatic inducible NOS expression and serum nitrate/nitrite levels were also increased. Treatment with an NOS inhibitor (L-NAME) abolished the CO-induced glutathione excretion and choleresis, but not Mrp2 expression. CONCLUSION: The present study demonstrated that CO enhanced biliary output in conjunction with NO by increasing the biliary excretion of glutathione. The increment in biliary glutathione was associated with an increased expression of hepatic Mrp2.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Bile/metabolismo , Monóxido de Carbono/farmacologia , Glutationa/metabolismo , Animais , Carboxihemoglobina/análise , Masculino , Cloreto de Metileno/farmacologia , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...