Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 223(Pt 2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31900346

RESUMO

Social isolation strongly modulates behavior across the animal kingdom. We utilized the fruit fly Drosophila melanogaster to study social isolation-driven changes in animal behavior and gene expression in the brain. RNA-seq identified several head-expressed genes strongly responding to social isolation or enrichment. Of particular interest, social isolation downregulated expression of the gene encoding the neuropeptide Drosulfakinin (Dsk), the homologue of vertebrate cholecystokinin (CCK), which is critical for many mammalian social behaviors. Dsk knockdown significantly increased social isolation-induced aggression. Genetic activation or silencing of Dsk neurons each similarly increased isolation-driven aggression. Our results suggest a U-shaped dependence of social isolation-induced aggressive behavior on Dsk signaling, similar to the actions of many neuromodulators in other contexts.


Assuntos
Agressão , Drosophila melanogaster/fisiologia , Neuropeptídeos/metabolismo , Oligopeptídeos/metabolismo , Isolamento Social , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Drosophila melanogaster/genética , Masculino , Neuropeptídeos/genética , Oligopeptídeos/genética , Análise de Sequência de RNA
2.
Mol Ecol ; 27(23): 4680-4697, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30308702

RESUMO

The mechanisms that determine patterns of species dispersal are important factors in the production and maintenance of biodiversity. Understanding these mechanisms helps to forecast the responses of species to environmental change. Here, we used a comparative framework and genomewide data obtained through RAD-Seq to compare the patterns of connectivity among breeding colonies for five penguin species with shared ancestry, overlapping distributions and differing ecological niches, allowing an examination of the intrinsic and extrinsic barriers governing dispersal patterns. Our findings show that at-sea range and oceanography underlie patterns of dispersal in these penguins. The pelagic niche of emperor (Aptenodytes forsteri), king (A. patagonicus), Adélie (Pygoscelis adeliae) and chinstrap (P. antarctica) penguins facilitates gene flow over thousands of kilometres. In contrast, the coastal niche of gentoo penguins (P. papua) limits dispersal, resulting in population divergences. Oceanographic fronts also act as dispersal barriers to some extent. We recommend that forecasts of extinction risk incorporate dispersal and that management units are defined by at-sea range and oceanography in species lacking genetic data.


Assuntos
Distribuição Animal , Genética Populacional , Genômica , Spheniscidae/genética , Animais , Regiões Antárticas , Ecossistema , Fluxo Gênico , Variação Genética , Técnicas de Genotipagem , Filogenia , Polimorfismo de Nucleotídeo Único , Spheniscidae/classificação
3.
Nat Commun ; 9(1): 3633, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194301

RESUMO

Currently, little is known about the evolution of epigenetic regulation in animal stem cells. Here we demonstrate, using the planarian stem cell system to investigate the role of the COMPASS family of MLL3/4 histone methyltransferases that their function as tumor suppressors in mammalian stem cells is conserved over a long evolutionary distance. To investigate the potential conservation of a genome-wide epigenetic regulatory program in animal stem cells, we assess the effects of Mll3/4 loss of function by performing RNA-seq and ChIP-seq on the G2/M planarian stem cell population, part of which contributes to the formation of outgrowths. We find many oncogenes and tumor suppressors among the affected genes that are likely candidates for mediating MLL3/4 tumor suppression function. Our work demonstrates conservation of an important epigenetic regulatory program in animals and highlights the utility of the planarian model system for studying epigenetic regulation.


Assuntos
Epigênese Genética , Evolução Molecular , Histona Metiltransferases/fisiologia , Células-Tronco Pluripotentes/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Neurogênese , Oncogenes , Planárias , Regeneração
4.
Genome Res ; 28(10): 1543-1554, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30143598

RESUMO

Planarian flatworms have an indefinite capacity to regenerate missing or damaged body parts owing to a population of pluripotent adult stems cells called neoblasts (NBs). Currently, little is known about the importance of the epigenetic status of NBs and how histone modifications regulate homeostasis and cellular differentiation. We have developed an improved and optimized ChIP-seq protocol for NBs in Schmidtea mediterranea and have generated genome-wide profiles for the active marks H3K4me3 and H3K36me3, and suppressive marks H3K4me1 and H3K27me3. The genome-wide profiles of these marks were found to correlate well with NB gene expression profiles. We found that genes with little transcriptional activity in the NB compartment but which switch on in post-mitotic progeny during differentiation are bivalent, being marked by both H3K4me3 and H3K27me3 at promoter regions. In further support of this hypothesis, bivalent genes also have a high level of paused RNA Polymerase II at the promoter-proximal region. Overall, this study confirms that epigenetic control is important for the maintenance of a NB transcriptional program and makes a case for bivalent promoters as a conserved feature of animal stem cells and not a vertebrate-specific innovation. By establishing a robust ChIP-seq protocol and analysis methodology, we further promote planarians as a promising model system to investigate histone modification-mediated regulation of stem cell function and differentiation.


Assuntos
Proteínas de Helminto/genética , Histonas/metabolismo , Planárias/genética , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Imunoprecipitação da Cromatina , Epigênese Genética , Perfilação da Expressão Gênica , Código das Histonas , Processamento de Proteína Pós-Traducional , Análise de Sequência de DNA , Análise de Sequência de RNA
5.
Dev Biol ; 433(2): 448-460, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28757111

RESUMO

Temporal and spatial characterization of gene expression is a prerequisite for the understanding of cell-, tissue-, and organ-differentiation. In a multifaceted approach to investigate gene expression in the tail plate of the free-living marine flatworm Macrostomum lignano, we performed a posterior-region-specific in situ hybridization screen, RNA sequencing (RNA-seq) of regenerating animals, and functional analyses of selected tail-specific genes. The in situ screen revealed transcripts expressed in the antrum, cement glands, adhesive organs, prostate glands, rhabdite glands, and other tissues. Next we used RNA-seq to characterize temporal expression in the regenerating tail plate revealing a time restricted onset of both adhesive organs and copulatory apparatus regeneration. In addition, we identified three novel previously unannotated genes solely expressed in the regenerating stylet. RNA interference showed that these genes are required for the formation of not only the stylet but the whole male copulatory apparatus. RNAi treated animals lacked the stylet, vesicula granulorum, seminal vesicle, false seminal vesicle, and prostate glands, while the other tissues of the tail plate, such as adhesive organs regenerated normally. In summary, our findings provide a large resource of expression data during homeostasis and regeneration of the morphologically complex tail regeneration and pave the way for a better understanding of organogenesis in M. lignano.


Assuntos
Regulação da Expressão Gênica , Genes de Helmintos , Proteínas de Helminto/genética , Platelmintos/fisiologia , Regeneração/genética , Cauda/fisiologia , Animais , Proteínas de Helminto/biossíntese , Organismos Hermafroditas , Hibridização In Situ , Microvilosidades , Especificidade de Órgãos , Platelmintos/genética , Interferência de RNA , RNA de Helmintos/biossíntese , RNA de Helmintos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Regeneração/fisiologia , Transcriptoma , Cicatrização/genética
6.
Mol Ecol ; 26(15): 3883-3897, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28488293

RESUMO

Understanding the boundaries of breeding populations is of great importance for conservation efforts and estimates of extinction risk for threatened species. However, determining these boundaries can be difficult when population structure is subtle. Emperor penguins are highly reliant on sea ice, and some populations may be in jeopardy as climate change alters sea-ice extent and quality. An understanding of emperor penguin population structure is therefore urgently needed. Two previous studies have differed in their conclusions, particularly whether the Ross Sea, a major stronghold for the species, is isolated or not. We assessed emperor penguin population structure using 4,596 genome-wide single nucleotide polymorphisms (SNPs), characterized in 110 individuals (10-16 per colony) from eight colonies around Antarctica. In contrast to a previous conclusion that emperor penguins are panmictic around the entire continent, we find that emperor penguins comprise at least four metapopulations, and that the Ross Sea is clearly a distinct metapopulation. Using larger sample sizes and a thorough assessment of the limitations of different analytical methods, we have shown that population structure within emperor penguins does exist and argue that its recognition is vital for the effective conservation of the species. We discuss the many difficulties that molecular ecologists and managers face in the detection and interpretation of subtle population structure using large SNP data sets, and argue that subtle structure should be taken into account when determining management strategies for threatened species, until accurate estimates of demographic connectivity among populations can be made.


Assuntos
Conservação dos Recursos Naturais , Genética Populacional , Spheniscidae/genética , Animais , Regiões Antárticas , Mudança Climática , Camada de Gelo , Polimorfismo de Nucleotídeo Único , Densidade Demográfica
7.
Nat Commun ; 7: 13430, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845328

RESUMO

Microbes that protect their hosts from pathogens are widespread in nature and are attractive disease control agents. Given that pathogen adaptation to barriers against infection can drive changes in pathogen virulence, 'defensive microbes' may shape disease severity. Here we show that co-evolving a microbe with host-protective properties (Enterococcus faecalis) and a pathogen (Staphylococcus aureus) within Caenorhabditis elegans hosts drives the evolution of reduced pathogen virulence as a by-product of adaptation to the defensive microbe. Using both genomic and phenotypic analyses, we discover that the production of fewer iron-scavenging siderophores by the pathogen reduces the fitness of the defensive microbe and underpins the decline in pathogen virulence. These data show that defensive microbes can shape the evolution of pathogen virulence and that the mechanism of pathogen resistance can determine the direction of virulence evolution.


Assuntos
Antibiose , Caenorhabditis elegans/microbiologia , Enterococcus faecalis/fisiologia , Staphylococcus aureus/patogenicidade , Animais , Coevolução Biológica , Enterococcus faecalis/genética , Genômica , Interações Hospedeiro-Patógeno , Seleção Genética , Sideróforos/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fatores de Tempo , Virulência/genética
8.
Elife ; 52016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27849518

RESUMO

The amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion ('wood eating'), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of Parhyale as an experimental model. The first malacostracan genome will underpin ongoing comparative work in food crop species and research investigating lignocellulose as an energy source.


Assuntos
Anfípodes/genética , Proteínas de Artrópodes/genética , Genoma , Estágios do Ciclo de Vida/genética , Lignina/metabolismo , Redes e Vias Metabólicas/genética , Anfípodes/classificação , Anfípodes/crescimento & desenvolvimento , Anfípodes/metabolismo , Animais , Aquicultura , Proteínas de Artrópodes/imunologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Imunidade Inata , Cariótipo , Estágios do Ciclo de Vida/imunologia , Masculino , Redes e Vias Metabólicas/imunologia , Anotação de Sequência Molecular , Filogenia , RNA não Traduzido/genética , RNA não Traduzido/imunologia , Regeneração , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
9.
BMC Evol Biol ; 16(1): 211, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27733109

RESUMO

BACKGROUND: Seabirds are important components of marine ecosystems, both as predators and as indicators of ecological change, being conspicuous and sensitive to changes in prey abundance. To determine whether fluctuations in population sizes are localised or indicative of large-scale ecosystem change, we must first understand population structure and dispersal. King penguins are long-lived seabirds that occupy a niche across the sub-Antarctic zone close to the Polar Front. Colonies have very different histories of exploitation, population recovery, and expansion. RESULTS: We investigated the genetic population structure and patterns of colonisation of king penguins across their current range using a dataset of 5154 unlinked, high-coverage single nucleotide polymorphisms generated via restriction site associated DNA sequencing (RADSeq). Despite breeding at a small number of discrete, geographically separate sites, we find only very slight genetic differentiation among colonies separated by thousands of kilometers of open-ocean, suggesting migration among islands and archipelagos may be common. Our results show that the South Georgia population is slightly differentiated from all other colonies and suggest that the recently founded Falkland Island colony is likely to have been established by migrants from the distant Crozet Islands rather than nearby colonies on South Georgia, possibly as a result of density-dependent processes. CONCLUSIONS: The observed subtle differentiation among king penguin colonies must be considered in future conservation planning and monitoring of the species, and demographic models that attempt to forecast extinction risk in response to large-scale climate change must take into account migration. It is possible that migration could buffer king penguins against some of the impacts of climate change where colonies appear panmictic, although it is unlikely to protect them completely given the widespread physical changes projected for their Southern Ocean foraging grounds. Overall, large-scale population genetic studies of marine predators across the Southern Ocean are revealing more interconnection and migration than previously supposed.


Assuntos
Migração Animal/fisiologia , Ecossistema , Genética Populacional , Spheniscidae/genética , Animais , Regiões Antárticas , Teorema de Bayes , Análise por Conglomerados , Análise Discriminante , Variação Genética , Técnicas de Genotipagem , Geografia , Filogeografia , Densidade Demográfica , Análise de Componente Principal
10.
BMC Genomics ; 14: 797, 2013 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-24238224

RESUMO

BACKGROUND: Planarians can regenerate entire animals from a small fragment of the body. The regenerating fragment is able to create new tissues and remodel existing tissues to form a complete animal. Thus different fragments with very different starting components eventually converge on the same solution. In this study, we performed an extensive RNA-seq time-course on regenerating head and tail fragments to observe the differences and similarities of the transcriptional landscape between head and tail fragments during regeneration. RESULTS: We have consolidated existing transcriptomic data for S. mediterranea to generate a high confidence set of transcripts for use in genome wide expression studies. We performed a RNA-seq time-course on regenerating head and tail fragments from 0 hours to 3 days. We found that the transcriptome profiles of head and tail regeneration were very different at the start of regeneration; however, an unexpected convergence of transcriptional profiles occurred at 48 hours when head and tail fragments are still morphologically distinct. By comparing differentially expressed transcripts at various time-points, we revealed that this divergence/convergence pattern is caused by a shared regulatory program that runs early in heads and later in tails.Additionally, we also performed RNA-seq on smed-prep(RNAi) tail fragments which ultimately fail to regenerate anterior structures. We find the gene regulation program in response to smed-prep(RNAi) to display the opposite regulatory trend compared to the previously mentioned share regulatory program during regeneration. Using annotation data and comparative approaches, we also identified a set of approximately 4,800 triclad specific transcripts that were enriched amongst the genes displaying differential expression during the regeneration time-course. CONCLUSION: The regeneration transcriptome of head and tail regeneration provides us with a rich resource for investigating the global expression changes that occurs during regeneration. We show that very different regenerative scenarios utilize a shared core regenerative program. Furthermore, our consolidated transcriptome and annotations allowed us to identity triclad specific transcripts that are enriched within this core regulatory program. Our data support the hypothesis that both conserved aspects of animal developmental programs and recent evolutionarily innovations work in concert to control regeneration.


Assuntos
Regulação da Expressão Gênica , Planárias/fisiologia , Regeneração , Transcriptoma , Animais , Análise por Conglomerados , Etiquetas de Sequências Expressas , Cabeça/fisiologia , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Fases de Leitura Aberta , Interferência de RNA , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cauda/fisiologia
11.
Genomics ; 100(3): 157-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22691267

RESUMO

Endogenous retroviral elements (EREs), a family of transposable elements, constitute a substantial fraction of mammalian genomes. It is expected that profiles of the ERE sequences and their genomic locations are unique for each individual. Comprehensive characterization of the EREs' genomic locations and their biological properties is essential for understanding their roles in the pathophysiology of the host. In this study, we identified and mapped putative EREs (a total of 111 endogenous retroviruses [ERVs] and 488 solo long terminal repeats [sLTRs]) within the C57BL/6J mouse genome. The biological properties of individual ERE isolates (both ERVs and sLTRs) were then characterized in the following aspects: transcription potential, tropism trait, coding potential, recombination event, integration age, and primer binding site for replication. In addition, a suite of database management system programs was developed to organize and update the data acquired from current and future studies and to make the data accessible via internet.


Assuntos
Mapeamento Cromossômico/métodos , Bases de Dados Genéticas , Retrovirus Endógenos/genética , Genoma , Software , Animais , Sítios de Ligação , Primers do DNA/química , Retrovirus Endógenos/classificação , Camundongos , Camundongos Endogâmicos C57BL , Fases de Leitura Aberta , Filogenia , Regiões Promotoras Genéticas , Recombinação Genética , Elementos Reguladores de Transcrição , Análise de Sequência de DNA/métodos , Sequências Repetidas Terminais , Transcrição Gênica
12.
EMBO J ; 31(12): 2747-9, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22562151

RESUMO

Stem cells, both adult and germline, are the key cells underpinning animal evolution. Yet, surprisingly little is known about the evolution of their shared key feature: pluripotency. Now using genome-wide expression profiling of pluripotent planarian adult stem cells (pASCs), Önal et al (2012) present evidence for deep molecular conservation of pluripotency. They characterise the expression profile of pASCs and identify conserved expression profiles and functions for genes required for mammalian pluripotency. Their analyses suggest that molecular pluripotency mechanisms may be conserved, and tantalisingly that pluripotency in germ stem cells (GSCs) and somatic stem cells (SSCs) may have had shared common evolutionary origins.


Assuntos
Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Planárias/citologia , Células-Tronco Pluripotentes/fisiologia , Animais
13.
Genome Biol ; 13(3): R19, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22439894

RESUMO

BACKGROUND: Planarian stem cells, or neoblasts, drive the almost unlimited regeneration capacities of freshwater planarians. Neoblasts are traditionally described by their morphological features and by the fact that they are the only proliferative cell type in asexual planarians. Therefore, they can be specifically eliminated by irradiation. Irradiation, however, is likely to induce transcriptome-wide changes in gene expression that are not associated with neoblast ablation. This has affected the accurate description of their specific transcriptomic profile. RESULTS: We introduce the use of Smed-histone-2B RNA interference (RNAi) for genetic ablation of neoblast cells in Schmidtea mediterranea as an alternative to irradiation. We characterize the rapid, neoblast-specific phenotype induced by Smed-histone-2B RNAi, resulting in neoblast ablation. We compare and triangulate RNA-seq data after using both irradiation and Smed-histone-2B RNAi over a time course as means of neoblast ablation. Our analyses show that Smed-histone-2B RNAi eliminates neoblast gene expression with high specificity and discrimination from gene expression in other cellular compartments. We compile a high confidence list of genes downregulated by both irradiation and Smed-histone-2B RNAi and validate their expression in neoblast cells. Lastly, we analyze the overall expression profile of neoblast cells. CONCLUSIONS: Our list of neoblast genes parallels their morphological features and is highly enriched for nuclear components, chromatin remodeling factors, RNA splicing factors, RNA granule components and the machinery of cell division. Our data reveal that the regulation of planarian stem cells relies on posttranscriptional regulatory mechanisms and suggest that planarians are an ideal model for this understudied aspect of stem cell biology.


Assuntos
Histonas/genética , Planárias/genética , Células-Tronco Pluripotentes/metabolismo , Interferência de RNA , RNA Mensageiro/genética , Transcriptoma/genética , Animais , Divisão Celular/genética , Divisão Celular/efeitos da radiação , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Raios gama , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Histonas/metabolismo , Mar Mediterrâneo , Análise de Sequência com Séries de Oligonucleotídeos , Planárias/crescimento & desenvolvimento , Planárias/efeitos da radiação , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos da radiação , RNA Mensageiro/antagonistas & inibidores
14.
PLoS One ; 5(12): e15617, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21179477

RESUMO

The use of planarians as a model system is expanding and the mechanisms that control planarian regeneration are being elucidated. The planarian Schmidtea mediterranea in particular has become a species of choice. Currently the planarian research community has access to this whole genome sequencing project and over 70,000 expressed sequence tags. However, the establishment of massively parallel sequencing technologies has provided the opportunity to define genetic content, and in particular transcriptomes, in unprecedented detail. Here we apply this approach to the planarian model system. We have sequenced, mapped and assembled 581,365 long and 507,719,814 short reads from RNA of intact and mixed stages of the first 7 days of planarian regeneration. We used an iterative mapping approach to identify and define de novo splice sites with short reads and increase confidence in our transcript predictions. We more than double the number of transcripts currently defined by publicly available ESTs, resulting in a collection of 25,053 transcripts described by combining platforms. We also demonstrate the utility of this collection for an RNAseq approach to identify potential transcripts that are enriched in neoblast stem cells and their progeny by comparing transcriptome wide expression levels between irradiated and intact planarians. Our experiments have defined an extensive planarian transcriptome that can be used as a template for RNAseq and can also help to annotate the S. mediterranea genome. We anticipate that suites of other 'omic approaches will also be facilitated by building on this comprehensive data set including RNAseq across many planarian regenerative stages, scenarios, tissues and phenotypes generated by RNAi.


Assuntos
Técnicas Genéticas , Planárias/metabolismo , RNA/genética , Células-Tronco/citologia , Animais , Mapeamento Cromossômico , Mapeamento de Sequências Contíguas , Éxons , Etiquetas de Sequências Expressas , Biblioteca Gênica , Fases de Leitura Aberta , RNA Mensageiro/metabolismo , Regeneração/genética , Análise de Sequência de DNA , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...