Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 31(47): 475103, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31342938

RESUMO

In event-chain Monte Carlo simulations, we model colloidal particles in two dimensions that interact according to an isotropic short-ranged pair potential which supports the two typical length scales present in decagonal quasicrystals. We investigate the assembled structures as we vary the density and temperature. Our special interest is related to the transition from quasicrystal to liquid. In contrast to the KTHNY melting theory for quasicrystals which predicts an intermediate pentahedratic phase, we find a one-step first-order melting transition. However, we discover that the slow relaxation of phasonic flips, i.e. rearrangements of the particles due to additional degrees of freedom in quasicrystals, changes the positional correlation functions, to the extent that structures with long-range orientational correlations, but exponentially decaying positional correlations, are observed.

2.
Phys Rev E ; 96(1-1): 012602, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347123

RESUMO

We explore the growth of two-dimensional quasicrystals, i.e., aperiodic structures that possess long-range order, from two seeds at various distances and with different orientations by using dynamical phase-field crystal calculations. We compare the results to the growth of periodic crystals from two seeds. There, a domain border consisting of dislocations is observed in case of large distances between the seed and large angles between their orientation. Furthermore, a domain border is found if the seeds are placed at a distance that does not fit to the periodic lattice. In the case of the growth of quasicrystals, we only observe domain borders for large distances and different orientations. Note that all distances do inherently not match to a perfect domain wall-free quasicrystalline structure. Nevertheless, we find dislocation-free growth for all seeds at a small enough distance and for all seeds that approximately have the same orientation. In periodic structures, the stress that occurs due to incommensurate distances between the seeds results in phononic strain fields or, in the case of too large stresses, in dislocations. In contrast, in quasicrystals an additional phasonic strain field can occur and suppress dislocations. Phasons are additional degrees of freedom that are unique to quasicrystals. As a consequence, the additional phasonic strain field helps to distribute the stress and facilitates the growth of dislocation-free quasicrystals from multiple seeds. In contrast, in the periodic case the growth from multiple seeds most likely leads to a structure with multiple domains. Our work lays the theoretical foundations for growing perfect quasicrystals from different seeds and is therefore relevant for many applications.

3.
J Phys Condens Matter ; 29(9): 094002, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28008870

RESUMO

Phasons are additional degrees of freedom which occur in quasicrystals alongside the phonons known from conventional periodic crystals. The rearrangements of particles that are associated with a phason mode are hard to interpret in physical space. We reconstruct the quasicrystal structure by an embedding into extended higher-dimensional space, where phasons correspond to displacements perpendicular to the physical space. In dislocation-free decagonal colloidal quasicrystals annealed with Brownian dynamics simulations, we identify thermal phonon and phason modes. Finite phononic strain is pinned by phasonic excitations even after cooling down to zero temperature. For the phasonic displacements underlying the flip pattern, the reconstruction method gives an approximation within the limits of a multi-mode harmonic ansatz, and points to fundamental limitations of a harmonic picture for phasonic excitations in intrinsic colloidal quasicrystals.

4.
Adv Mater ; 23(22-23): 2535-53, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21681830

RESUMO

Predicting physical properties of materials with spatially complex structures is one of the most challenging problems in material science. One key to a better understanding of such materials is the geometric characterization of their spatial structure. Minkowski tensors are tensorial shape indices that allow quantitative characterization of the anisotropy of complex materials and are particularly well suited for developing structure-property relationships for tensor-valued or orientation-dependent physical properties. They are fundamental shape indices, in some sense being the simplest generalization of the concepts of volume, surface and integral curvatures to tensor-valued quantities. Minkowski tensors are based on a solid mathematical foundation provided by integral and stochastic geometry, and are endowed with strong robustness and completeness theorems. The versatile definition of Minkowski tensors applies widely to different types of morphologies, including ordered and disordered structures. Fast linear-time algorithms are available for their computation. This article provides a practical overview of the different uses of Minkowski tensors to extract quantitative physically-relevant spatial structure information from experimental and simulated data, both in 2D and 3D. Applications are presented that quantify (a) alignment of co-polymer films by an electric field imaged by surface force microscopy; (b) local cell anisotropy of spherical bead pack models for granular matter and of closed-cell liquid foam models; (c) surface orientation in open-cell solid foams studied by X-ray tomography; and (d) defect densities and locations in molecular dynamics simulations of crystalline copper.


Assuntos
Algoritmos , Metais/química , Simulação de Dinâmica Molecular , Polímeros/química , Porosidade
5.
J Microsc ; 238(1): 57-74, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20384838

RESUMO

Quantitative measures for anisotropic characteristics of spatial structure are needed when relating the morphology of microstructured heterogeneous materials to tensorial physical properties such as elasticity, permeability and conductance. Tensor-valued Minkowski functionals, defined in the framework of integral geometry, provide a concise set of descriptors of anisotropic morphology. In this article, we describe the robust computation of these measures for microscopy images and polygonal shapes. We demonstrate their relevance for shape description, their versatility and their robustness by applying them to experimental data sets, specifically microscopy data sets of non-equilibrium stationary Turing patterns and the shapes of ice grains from Antarctic cores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...