Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14404-14409, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38754022

RESUMO

Mesoporous silicon nitride (Si3N4) is a nontraditional support for the chemisorption of organometallic complexes with the potential for enhancing catalytic activity through features such as the increased Lewis basicity of nitrogen for heterolytic bond activation, increased ligand donor strength, and metal-ligand orbital overlap. Here, tetrabenzyl zirconium (ZrBn4) was chemisorbed on Si3N4, and the resulting supported organometallic species was characterized by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Dynamic Nuclear Polarization-enhanced Solid State Nuclear Magnetic Resonance (DNP-SSNMR), and X-ray Absorption Spectroscopy (XAS). Based on the hypothesis that the nitride might enable facile heterolytic C-H bond activation along the Zr-N bond, this material was found to be a highly active (1.53 molpropene molZr-1 h-1 at 450 °C) and selective (99% to propylene) catalyst for propane dehydrogenation. In contrast, the homologous silica supported complex exhibited negligible activity under these conditions.

2.
ACS Appl Mater Interfaces ; 15(46): 53498-53514, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37945527

RESUMO

The development of new methods of catalyst synthesis with the potential to generate active site structures orthogonal to those accessible by traditional protocols is of great importance for discovering new materials for addressing challenges in the evolving energy and chemical economy. In this work, the generality of oxidative grafting of organometallic and well-defined molecular metal precursors onto redox-active surfaces such as manganese dioxide (MnO2) and lithium manganese oxide (LiMn2O4) is investigated. Nine molecular metal precursors are explored, spanning groups 4-11 and each of the three periods of the transition metal series. The byproducts of the oxidative grafting reaction, a mixture of protodemetalation and ligand homocoupling for several organometallic precursors, was found to provide insights into the mechanism of the grafting reaction, suggesting oxidation of both the metal d-orbitals, as well as the metal-carbon σ-bonds, resulting in ejection of the ligand radical fragment. Analysis of the supported structures and oxidation state by X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) suggests that several of the chemisorbed metal ions are intercalated into interstitial vacancies of the surface structure while other complexes form intact molecular fragments on the surface. Proof of concept for the use of this metalation protocol to generate diverse, metal-dependent catalytic performance is demonstrated by the application of these materials in the conversion of cyclohexane to K/A oil (cyclohexanol and cyclohexanone) with tert-butyl hydroperoxide, as well as in the low-temperature (T ≤ 50 °C) oxidation of carbon monoxide to carbon dioxide.

3.
Dalton Trans ; 52(26): 8883-8892, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37358389

RESUMO

The MOF material NU-1000 was employed to host Ni tripodal complexes prepared from new organometallic precursors [HNi(κ4(E,P,P,P)-E(o-C6H4CH2PPh2)3], E = Si (Ni-1), Ge (Ni-2). The new heterogeneous catalytic materials, Ni-1@NU-1000 and Ni-2@NU-1000, show the advantages of both homogeneous and heterogeneous catalysts. They catalyze the hydroboration of aldehydes and ketones more efficiently than the homogeneous Ni-1 and Ni-2, under aerobic conditions and show recyclability.

4.
Chem Commun (Camb) ; 59(45): 6861-6864, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37194955

RESUMO

Isolated Pd atoms supported on high surface area MnO2, prepared by the oxidative grafting of (bis(tricyclohexylphosphine-palladium(0)), catalyze (>50 turnovers, 17 h) the low temperature (≤325 K) oxidation of CO (7.7 kPa O2, 2.6 kPa CO) with results of in situ/operando and ex situ spectroscopic characterization signifying a synergistic role of Pd and MnO2 in facilitating redox turnovers.

5.
J Am Chem Soc ; 145(14): 7992-8000, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995316

RESUMO

Catalytic C-H borylation is an attractive method for the conversion of the most abundant hydrocarbon, methane (CH4), to a mild nucleophilic building block. However, existing CH4 borylation catalysts often suffer from low turnover numbers and conversions, which is hypothesized to result from inactive metal hydride agglomerates. Herein we report that the heterogenization of a bisphosphine molecular precatalyst, [(dmpe)Ir(cod)CH3], onto amorphous silica dramatically enhances its performance, yielding a catalyst that is 12-times more efficient than the current standard for CH4 borylation. The catalyst affords over 2000 turnovers at 150 °C in 16 h with a selectivity of 91.5% for mono- vs diborylation. Higher catalyst loadings improve yield and selectivity for the monoborylated product (H3CBpin) with 82.8% yield and >99% selectivity being achieved with 1255 turnovers. X-ray absorption and dynamic nuclear polarization-enhanced solid-state NMR spectroscopic studies identify the supported precatalyst as an IrI species, and indicate that upon completion of catalysis, multinuclear Ir polyhydrides are not formed. This is consistent with the hypothesis that immobilization of the organometallic Ir species on a surface prevents bimolecular decomposition pathways. Immobilization of the homogeneous IrI fragment onto amorphous silica represents a unique and simple strategy to improve the TON and longevity of a CH4 borylation catalyst.

6.
J Am Chem Soc ; 144(37): 16883-16897, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36089745

RESUMO

Understanding heterogeneous catalysts is a challenging pursuit due to surface site nonuniformity and aperiodicity in traditionally used materials. One example is sulfated metal oxides, which function as highly active catalysts and as supports for organometallic complexes. These applications are due to traits such as acidity, ability to act as a weakly coordinating ligand, and aptitude for promoting transformations via radical cation intermediates. Research is ongoing about the structural features of sulfated metal oxides that imbue the aforementioned properties, such as sulfate geometry and coordination. To better understand these materials, metal-organic frameworks (MOFs) have been targeted as structurally defined analogues. Composed of inorganic nodes and organic linkers, MOFs possess features such as high porosity and crystallinity, which make them attractive for mechanistic studies of heterogeneous catalysts. In this work, Zr6-based MOF NU-1000 is sulfated and characterized using techniques such as single crystal X-ray diffraction in addition to diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The dynamic nature of the sulfate binding motif is found to transition from monodentate, to bidentate, to tridentate depending on the degree of hydration, as supported by density functional theory (DFT) calculations. Heightened Brønsted acidity compared to the parent MOF was observed upon sulfation and probed through trimethylphosphine oxide physisorption, ammonia sorption, in situ ammonia DRIFTS, and DFT studies. With the support structure benchmarked, an organoiridium complex was chemisorbed onto the sulfated MOF node, and the efficacy of this supported catalyst was demonstrated for stoichiometric and catalytic activation of benzene-d6 and toluene with structure-activity relationships derived.


Assuntos
Estruturas Metalorgânicas , Amônia , Benzeno , Catálise , Ligantes , Estruturas Metalorgânicas/química , Óxidos/química , Sulfatos , Óxidos de Enxofre , Tolueno , Zircônio/química
7.
Angew Chem Int Ed Engl ; 60(46): 24411-24417, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34435422

RESUMO

A low-spin and mononuclear vanadium complex, (Me nacnac)V(CO)(η2 -P≡Ct Bu) (2) (Me nacnac- =[ArNC(CH3 )]2 CH, Ar=2,6-i Pr2 C6 H3 ), was prepared upon treatment of the vanadium neopentylidyne complex (Me nacnac)V≡Ct Bu(OTf) (1) with Na(OCP)(diox)2.5 (diox=1,4-dioxane), while the isoelectronic ate-complex [Na(15-crown-5)]{([ArNC(CH2 )]CH[C(CH3 )NAr])V(CO)(η2 -P≡Ct Bu)} (4), was obtained via the reaction of Na(OCP)(diox)2.5 and ([ArNC(CH2 )]CH[C(CH3 )NAr])V≡Ct Bu(OEt2 ) (3) in the presence of crown-ether. Computational studies suggest that the P-atom transfer proceeds by [2+2]-cycloaddition of the P≡C bond across the V≡Ct Bu moiety, followed by a reductive decarbonylation to form the V-C≡O linkage. The nature of the electronic ground state in diamagnetic complexes, 2 and 4, was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X-ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X-ray single-crystal structural characterization. In combination, these data are consistent with a low-valent vanadium ion in complexes 2 and 4. This study represents the first example of a metathesis reaction between the P-atom of [PCO]- and an alkylidyne ligand.

8.
Chem Commun (Camb) ; 56(81): 12130-12133, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32960199

RESUMO

Heteroleptic copper(i) bis(phenanthroline) complexes with surface anchoring carboxylate groups have been synthesized and immobilized on nanoporous metal oxide substrates. The species investigated are responsive to the external environment and this work provides a new strategy to control charge transfer processes for efficient solar energy conversion.

9.
ACS Appl Mater Interfaces ; 12(37): 41758-41764, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32808761

RESUMO

A new material, MOF-type [Ir]@NU-1000, was accessed from the incorporation of the iridium organometallic fragment [Ir{κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)2}] into NU-1000. The new material incorporates less than 1 wt % of Ir(III) (molar ratio Ir to NU-1000, 1:11), but the heat of adsorption for SO2 is significantly enhanced with respect to that of NU-1000. Being a highly promising adsorbent for SO2 capture, [Ir]@NU-1000 combines exceptional SO2 uptake at room temperature and outstanding cyclability. Additionally, it is stable and can be regenerated after SO2 desorption at low temperature.

10.
J Am Chem Soc ; 141(15): 6325-6337, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30900885

RESUMO

Single-site supported organometallic catalysts bring together the favorable aspects of homogeneous and heterogeneous catalysis while offering opportunities to investigate the impact of metal-support interactions on reactivity. We report a ( dmPhebox)Ir(III) ( dmPhebox = 2,6-bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl) complex chemisorbed on sulfated zirconia, the molecular precursor for which was previously applied to hydrocarbon functionalization. Spectroscopic methods such as diffuse reflectance infrared Fourier transformation spectroscopy (DRIFTS), dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy, and X-ray absorption spectroscopy (XAS) were used to characterize the supported species. Tetrabutylammonium acetate was found to remove the organometallic species from the surface, enabling solution-phase analytical techniques in conjunction with traditional surface methods. Cationic character was imparted to the iridium center by its grafting onto sulfated zirconia, imbuing high levels of activity in electrophilic C-H bond functionalization reactions such as the stoichiometric dehydrogenation of alkanes, with density functional theory (DFT) calculations showing a lower barrier for ß-H elimination. Catalytic hydrogenation of olefins was also facilitated by the sulfated zirconia-supported ( dmPhebox)Ir(III) complex, while the homologous complex on silica was inactive under comparable conditions.

11.
Chem Rev ; 119(4): 2128-2191, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30296048

RESUMO

The chemistry of vanadium has seen remarkable activity in the past 50 years. In the present review, reactions catalyzed by homogeneous and supported vanadium complexes from 2008 to 2018 are summarized and discussed. Particular attention is given to mechanistic and kinetics studies of vanadium-catalyzed reactions including oxidations of alkanes, alkenes, arenes, alcohols, aldehydes, ketones, and sulfur species, as well as oxidative C-C and C-O bond cleavage, carbon-carbon bond formation, deoxydehydration, haloperoxidase, cyanation, hydrogenation, dehydrogenation, ring-opening metathesis polymerization, and oxo/imido heterometathesis. Additionally, insights into heterogeneous vanadium catalysis are provided when parallels can be drawn from the homogeneous literature.

12.
J Am Chem Soc ; 140(20): 6308-6316, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29629771

RESUMO

The chemical and electronic interactions of organometallic species with metal oxide support materials are of fundamental importance for the development of new classes of catalytic materials. Chemisorption of Cp*(PMe3)IrMe2 on sulfated alumina (SA) and sulfated zirconia (SZ) led to an unexpected redox mechanism for deuteration of the ancillary Cp* ligand. Evidence for this oxidative mechanism was provided by studying the analogous homogeneous reactivity of the organometallic precursors toward trityl cation ([Ph3C]+), a Lewis acid known to effect formal hydride abstraction by one-electron oxidation followed by hydrogen abstraction. Organometallic deuterium incorporation was found to be correlated with surface sulfate concentration as well as the extent of dehydration under thermal activation conditions of SA and SZ supports. Surface sulfate concentration dependence, in conjunction with a computational study of surface electron affinity, indicates an electron-deficient pyrosulfate species as the redox-active moiety. These results provide further evidence for the ability of sulfated metal oxides to participate in redox chemistry not only toward organometallic complexes but also in the larger context of their application as catalysts for the transformation of light alkanes.

13.
J Am Chem Soc ; 139(23): 8013-8021, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28581740

RESUMO

This study offers a detailed mechanistic investigation of host-guest encapsulation behavior in a new enzyme-mimetic metal-ligand host and provides the first observation of a conformational selection mechanism (as opposed to induced fit) in a supramolecular system. The Ga4L4 host described features a C3-symmetric ligand motif with meta-substituted phenyl spacers, which enables the host to initially self-assemble into an S4-symmetric structure and then subsequently isomerize to a T-symmetric tetrahedron for better accommodation of a sufficiently large guest. Selective inversion recovery 1H NMR studies provide structural insights into the self-exchange behaviors of the host and the guest individually in this dynamic system. Kinetic analysis of the encapsulation-isomerization event revealed that increasing the concentration of guest inhibits the rate of host-guest relaxation, a key distinguishing feature of conformational selection. A comprehensive study of this simple enzyme mimic provides insight into analogous behavior in biophysics and enzymology and aims to inform the design of efficient self-assembled microenvironment catalysts.

14.
J Am Chem Soc ; 138(30): 9682-93, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27458778

RESUMO

The scope and mechanism of the microenvironment-catalyzed C(sp(3))-C(sp(3)) reductive elimination from transition metal complexes [Au(III), Pt(IV)] is explored. Experiments detailing the effect of structural perturbation of neutral and anionic spectator ligands, reactive alkyl ligands, solvent, and catalyst structure are disclosed. Indirect evidence for a coordinatively unsaturated encapsulated cationic intermediate is garnered via observation of several inactive donor-arrested inclusion complexes, including a crystallographically characterized encapsulated Au(III) cation. Finally, based on stoichiometric experiments under catalytically relevant conditions, a detailed mechanism is outlined for the dual supramolecular and platinum-catalyzed C-C coupling between methyl iodide and tetramethyltin. Determination of major platinum species present under catalytic conditions and subsequent investigation of their chemistry reveals an unexpected interplay between cis-trans isomerism and the supramolecular catalyst in a Pt(II)/Pt(IV) cycle, as well as several off-cycle reactions.


Assuntos
Ouro/química , Compostos Organoplatínicos/química , Catálise , Hidrocarbonetos Iodados/química , Modelos Moleculares , Conformação Molecular , Oxirredução
15.
J Am Chem Soc ; 137(29): 9202-5, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26176416

RESUMO

Supramolecular assembly 1 catalyzes a bimolecular aza-Prins cyclization featuring an unexpected transannular 1,5-hydride transfer. This reaction pathway, which is promoted by constrictive binding within the supramolecular cavity of 1, is kinetically disfavored in the absence of 1, as evidenced by the orthogonal reactivity observed in bulk solution. Mechanistic investigation through kinetic analysis and isotopic labeling studies indicates that the rate-limiting step of the transformation is the encapsulation of a transient iminium ion and supports the proposed 1,5-hydride transfer mechanism. This represents a rare example of such an extreme divergence of product selectivity observed within a catalytic metal-ligand supramolecular enzyme mimic.


Assuntos
Hidrogênio/química , Monoterpenos Acíclicos , Aldeídos/química , Catálise , Ciclização , Cinética , Modelos Moleculares , Conformação Molecular , Monoterpenos/química
16.
Science ; 350(6265): 1235-8, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26785485

RESUMO

A self-assembled supramolecular complex is reported to catalyze alkyl-alkyl reductive elimination from high-valent transition metal complexes [such as gold(III) and platinum(IV)], the central bond-forming elementary step in many catalytic processes. The catalytic microenvironment of the supramolecular assembly acts as a functional enzyme mimic, applying the concepts of enzymatic catalysis to a reactivity manifold not represented in biology. Kinetic experiments delineate a Michaelis-Menten-type mechanism, with measured rate accelerations (k(cat)/k(uncat)) up to 1.9 × 10(7) (here k(cat) and k(uncat) are the Michaelis-Menten enzymatic rate constant and observed uncatalyzed rate constant, respectively). This modality has further been incorporated into a dual catalytic cross-coupling reaction, which requires both the supramolecular microenvironment catalyst and the transition metal catalyst operating in concert to achieve efficient turnover.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...