Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873349

RESUMO

Ischemic acute kidney injury (AKI) is common in hospitalized patients and increases the risk for chronic kidney disease (CKD). Impaired endothelial cell (EC) functions are thought to contribute in AKI to CKD transition, but the underlying mechanisms remain unclear. Here, we identify a critical role for endothelial oxygen sensing prolyl hydroxylase domain (PHD) enzymes 1-3 in regulating post-ischemic kidney repair. In renal endothelium, we observed compartment-specific differences in the expression of the three PHD isoforms in both mice and humans. We found that post-ischemic concurrent inactivation of endothelial PHD1, PHD2, and PHD3 but not PHD2 alone promoted maladaptive kidney repair characterized by exacerbated tissue injury, fibrosis, and inflammation. Single-cell RNA-seq analysis of the post-ischemic endothelial PHD1, PHD2 and PHD3 deficient (PHDTiEC) kidney revealed an endothelial glycolytic transcriptional signature, also observed in human kidneys with severe AKI. This metabolic program was coupled to upregulation of the SLC16A3 gene encoding the lactate exporter monocarboxylate transporter 4 (MCT4). Strikingly, treatment with the MCT4 inhibitor syrosingopine restored adaptive kidney repair in PHDTiEC mice. Mechanistically, MCT4 inhibition suppressed pro-inflammatory EC activation reducing monocyte-endothelial cell interaction. Our findings suggest avenues for halting AKI to CKD transition based on selectively targeting the endothelial hypoxia-driven glycolysis/MCT4 axis.

2.
iScience ; 25(10): 105086, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36157579

RESUMO

Endothelial cell (EC) metabolism has emerged as a driver of angiogenesis. While hypoxia inactivates the oxygen sensors prolyl-4 hydroxylase domain-containing proteins 1-3 (PHD1-3) and stimulates angiogenesis, the effects of PHDs on EC functions remain poorly defined. Here, we investigated the impact of chemical PHD inhibition by dimethyloxalylglycine (DMOG) on angiogenic competence and metabolism of human vascular ECs. DMOG reduced EC proliferation, migration, and tube formation capacities, responses that were associated with an unfavorable metabolic reprogramming. While glycolytic genes were induced, multiple genes encoding sub-units of mitochondrial complex I were suppressed with concurrent decline in nicotinamide adenine dinucleotide (NAD+) levels. Importantly, the DMOG-induced defects in EC migration could be partially rescued by augmenting NAD+ levels through nicotinamide riboside or citrate supplementation. In summary, by integrating functional assays, transcriptomics, and metabolomics, we provide insights into the effects of PHD inhibition on angiogenic competence and metabolism of human vascular ECs.

3.
Nephron ; 146(3): 243-248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34515168

RESUMO

Ischemia reperfusion injury (IRI) results from a cessation or restriction of blood supply to an organ followed by reestablishment of perfusion and reoxygenation. In the kidney, IRI due to transplantation, cardiac surgery with cardiopulmonary bypass, and other major vascular surgeries contributes to acute kidney injury (AKI), a clinical condition associated with significant morbidity and mortality in hospitalized patients. In the postischemic kidney, endothelial damage promotes inflammatory responses and leads to persistent hypoxia of the renal tubular epithelium. Like other cell types, endothelial cells respond to low oxygen tension by multiple hypoxic signaling mechanisms. Key mediators of adaptation to hypoxia are hypoxia-inducible factors (HIF)-1 and -2, transcription factors whose activity is negatively regulated by prolyl-hydroxylase domain proteins 1 to 3 (PHD1 to PHD3). The PHD/HIF axis controls several processes determining injury outcome, including ATP generation, cell survival, proliferation, and angiogenesis. Here, we discuss recent advances in our understanding of the endothelial-derived PHD/HIF signaling and its effects on postischemic AKI.


Assuntos
Injúria Renal Aguda , Prolil Hidroxilases , Animais , Modelos Animais de Doenças , Células Endoteliais , Humanos , Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Pró-Colágeno-Prolina Dioxigenase/metabolismo
4.
Cell Rep ; 36(7): 109547, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407414

RESUMO

Prolonged cellular hypoxia leads to energetic failure and death. However, sublethal hypoxia can trigger an adaptive response called hypoxic preconditioning. While prolyl-hydroxylase (PHD) enzymes and hypoxia-inducible factors (HIFs) have been identified as key elements of oxygen-sensing machinery, the mechanisms by which hypoxic preconditioning protects against insults remain unclear. Here, we perform serum metabolomic profiling to assess alterations induced by two potent cytoprotective approaches, hypoxic preconditioning and pharmacologic PHD inhibition. We discover that both approaches increase serum kynurenine levels and enhance kynurenine biotransformation, leading to preservation of NAD+ in the post-ischemic kidney. Furthermore, we show that indoleamine 2,3-dioxygenase 1 (Ido1) deficiency abolishes the systemic increase of kynurenine and the subsequent renoprotection generated by hypoxic preconditioning and PHD inhibition. Importantly, exogenous administration of kynurenine restores the hypoxic preconditioning in the context of Ido1 deficiency. Collectively, our findings demonstrate a critical role of the IDO1-kynurenine axis in mediating hypoxic preconditioning.


Assuntos
Hipóxia/complicações , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Isquemia/patologia , Rim/irrigação sanguínea , Rim/lesões , Cinurenina/metabolismo , Animais , Hipóxia/sangue , Indolamina-Pirrol 2,3,-Dioxigenase/deficiência , Inflamação/sangue , Inflamação/patologia , Isquemia/sangue , Rim/patologia , Cinurenina/administração & dosagem , Metaboloma , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Substâncias Protetoras/metabolismo , Triptofano/sangue
5.
J Am Soc Nephrol ; 31(3): 501-516, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31996410

RESUMO

BACKGROUND: Prolyl-4-hydroxylase domain-containing proteins 1-3 (PHD1 to PHD3) regulate the activity of the hypoxia-inducible factors (HIFs) HIF-1 and HIF-2, transcription factors that are key regulators of hypoxic vascular responses. We previously reported that deficiency of endothelial HIF-2 exacerbated renal ischemia-reperfusion injury, whereas inactivation of endothelial PHD2, the main oxygen sensor, provided renoprotection. Nevertheless, the molecular mechanisms by which endothelial PHD2 dictates AKI outcomes remain undefined. METHODS: To investigate the function of the endothelial PHD2/HIF axis in ischemic AKI, we examined the effects of endothelial-specific ablation of PHD2 in a mouse model of renal ischemia-reperfusion injury. We also interrogated the contribution of each HIF isoform by concurrent endothelial deletion of both PHD2 and HIF-1 or both PHD2 and HIF-2. RESULTS: Endothelial deletion of Phd2 preserved kidney function and limited transition to CKD. Mechanistically, we found that endothelial Phd2 ablation protected against renal ischemia-reperfusion injury by suppressing the expression of proinflammatory genes and recruitment of inflammatory cells in a manner that was dependent on HIF-1 but not HIF-2. Persistence of renoprotective responses after acute inducible endothelial-specific loss of Phd2 in adult mice ruled out a requirement for PHD2 signaling in hematopoietic cells. Although Phd2 inhibition was not sufficient to induce detectable HIF activity in the kidney endothelium, in vitro experiments implicated a humoral factor in the anti-inflammatory effects generated by endothelial PHD2/HIF-1 signaling. CONCLUSIONS: Our findings suggest that activation of endothelial HIF-1 signaling through PHD2 inhibition may offer a novel therapeutic approach against ischemic AKI.


Assuntos
Injúria Renal Aguda/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular , Modelos Animais de Doenças , Humanos , Camundongos , Pró-Colágeno-Prolina Dioxigenase/genética , Sensibilidade e Especificidade , Transdução de Sinais/genética
6.
J Histochem Cytochem ; 68(1): 75-91, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31714169

RESUMO

Hyaluronan (HA) is a ubiquitous component of the extracellular matrix. The spatial-temporal localization of HA can be visualized in situ using biotinylated HA binding proteins (HABPs). This assay is sensitive to fixation conditions, and there are currently no best practices for HA detection. Thus, the goal of this study was to optimize fixation conditions for visualizing HA in the ovary, kidney, and liver through analysis of six commonly used fixatives for HA detection: Bouin's Solution, Carnoy's Solution, Ethanol-Formalin-Glacial Acetic Acid (EFG), Histochoice, Modified Davidson's Solution, and 10% Neutral Buffered Formalin. Organs were harvested from CB6F1 mice and fixed with one of the identified fixatives. Fixed organs were sectioned, and the HABP assay was performed on sections in parallel. Hematoxylin and eosin staining was also performed to visualize tissue architecture. HABP signal localization and intensity varied between fixatives. EFG and Carnoy's Solution best preserved the HA signal intensity in the ovary and liver, showing HA localization in various sub-organ structures. In the kidney, only Modified Davidson's Solution was less than optimal. Our findings demonstrate that fixation can alter the ability to detect HA in tissue macro- and microstructures, as well as localization in a tissue-specific manner, in situ.


Assuntos
Ácido Hialurônico/metabolismo , Rim/metabolismo , Fígado/metabolismo , Ovário/metabolismo , Fixação de Tecidos/métodos , Animais , Feminino , Humanos , Camundongos , Especificidade de Órgãos , Ratos , Inclusão do Tecido
7.
J Clin Invest ; 126(5): 1926-38, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27088801

RESUMO

Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2-/- renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2-/- mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation.


Assuntos
Eritropoetina/biossíntese , Fatores de Transcrição Forkhead/metabolismo , Hipóxia/metabolismo , Rim/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Eritropoetina/genética , Fatores de Transcrição Forkhead/genética , Hipóxia/genética , Hipóxia/patologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Rim/irrigação sanguínea , Rim/patologia , Camundongos , Camundongos Knockout , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia
8.
Mol Cell Biol ; 36(10): 1584-94, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976644

RESUMO

Hypoxia-inducible factors 1 and 2 (HIF-1 and -2) control oxygen supply to tissues by regulating erythropoiesis, angiogenesis and vascular homeostasis. HIFs are regulated in response to oxygen availability by prolyl-4-hydroxylase domain (PHD) proteins, with PHD2 being the main oxygen sensor that controls HIF activity under normoxia. In this study, we used a genetic approach to investigate the endothelial PHD2/HIF axis in the regulation of vascular function. We found that inactivation of Phd2 in endothelial cells specifically resulted in severe pulmonary hypertension (∼118% increase in right ventricular systolic pressure) but not polycythemia and was associated with abnormal muscularization of peripheral pulmonary arteries and right ventricular hypertrophy. Concurrent inactivation of either Hif1a or Hif2a in endothelial cell-specific Phd2 mutants demonstrated that the development of pulmonary hypertension was dependent on HIF-2α but not HIF-1α. Furthermore, endothelial HIF-2α was required for the development of increased pulmonary artery pressures in a model of pulmonary hypertension induced by chronic hypoxia. We propose that these HIF-2-dependent effects are partially due to increased expression of vasoconstrictor molecule endothelin 1 and a concomitant decrease in vasodilatory apelin receptor signaling. Taken together, our data identify endothelial HIF-2 as a key transcription factor in the pathogenesis of pulmonary hypertension.


Assuntos
Hipertensão Pulmonar/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Pressão Arterial , Hipóxia Celular , Modelos Animais de Doenças , Hipertensão Pulmonar/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Camundongos , Mutação , Artéria Pulmonar/fisiologia , Transdução de Sinais
9.
Am J Physiol Renal Physiol ; 309(10): F821-34, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26311114

RESUMO

More effective therapeutic strategies for the prevention and treatment of acute kidney injury (AKI) are needed to improve the high morbidity and mortality associated with this frequently encountered clinical condition. Ischemic and/or hypoxic preconditioning attenuates susceptibility to ischemic injury, which results from both oxygen and nutrient deprivation and accounts for most cases of AKI. While multiple signaling pathways have been implicated in renoprotection, this review will focus on oxygen-regulated cellular and molecular responses that enhance the kidney's tolerance to ischemia and promote renal repair. Central mediators of cellular adaptation to hypoxia are hypoxia-inducible factors (HIFs). HIFs play a crucial role in ischemic/hypoxic preconditioning through the reprogramming of cellular energy metabolism, and by coordinating adenosine and nitric oxide signaling with antiapoptotic, oxidative stress, and immune responses. The therapeutic potential of HIF activation for the treatment and prevention of ischemic injuries will be critically examined in this review.


Assuntos
Injúria Renal Aguda/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Precondicionamento Isquêmico , Rim/metabolismo , Animais , Humanos , Estresse Oxidativo/fisiologia
10.
J Clin Invest ; 124(6): 2396-409, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24789906

RESUMO

The hypoxia-inducible transcription factors HIF-1 and HIF-2 mediate key cellular adaptions to hypoxia and contribute to renal homeostasis and pathophysiology; however, little is known about the cell type-specific functions of HIF-1 and HIF-2 in response to ischemic kidney injury. Here, we used a genetic approach to specifically dissect the roles of endothelial HIF-1 and HIF-2 in murine models of hypoxic kidney injury induced by ischemia reperfusion or ureteral obstruction. In both models, inactivation of endothelial HIF increased injury-associated renal inflammation and fibrosis. Specifically, inactivation of endothelial HIF-2α, but not endothelial HIF-1α, resulted in increased expression of renal injury markers and inflammatory cell infiltration in the postischemic kidney, which was reversed by blockade of vascular cell adhesion molecule-1 (VCAM1) and very late antigen-4 (VLA4) using monoclonal antibodies. In contrast, pharmacologic or genetic activation of HIF via HIF prolyl-hydroxylase inhibition protected wild-type animals from ischemic kidney injury and inflammation; however, these same protective effects were not observed in HIF prolyl-hydroxylase inhibitor-treated animals lacking endothelial HIF-2. Taken together, our data indicate that endothelial HIF-2 protects from hypoxia-induced renal damage and represents a potential therapeutic target for renoprotection and prevention of fibrosis following acute ischemic injury.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Isquemia/fisiopatologia , Rim/lesões , Rim/fisiopatologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Fibrose , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Integrina alfa4beta1/antagonistas & inibidores , Integrina alfa4beta1/fisiologia , Isquemia/patologia , Isquemia/prevenção & controle , Rim/irrigação sanguínea , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Traumatismo por Reperfusão/prevenção & controle , Obstrução Ureteral/complicações , Molécula 1 de Adesão de Célula Vascular/fisiologia
11.
J Immunol ; 188(10): 5106-15, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22490864

RESUMO

Renal fibrosis and inflammation are associated with hypoxia, and tissue pO(2) plays a central role in modulating the progression of chronic kidney disease. Key mediators of cellular adaptation to hypoxia are hypoxia-inducible factor (HIF)-1 and -2. In the kidney, they are expressed in a cell type-specific manner; to what degree activation of each homolog modulates renal fibrogenesis and inflammation has not been established. To address this issue, we used Cre-loxP recombination to activate or to delete both Hif-1 and Hif-2 either globally or cell type specifically in myeloid cells. Global activation of Hif suppressed inflammation and fibrogenesis in mice subjected to unilateral ureteral obstruction, whereas activation of Hif in myeloid cells suppressed inflammation only. Suppression of inflammatory cell infiltration was associated with downregulation of CC chemokine receptors in renal macrophages. Conversely, global deletion or myeloid-specific inactivation of Hif promoted inflammation. Furthermore, prolonged hypoxia suppressed the expression of multiple inflammatory molecules in noninjured kidneys. Collectively, we provide experimental evidence that hypoxia and/or myeloid cell-specific HIF activation attenuates renal inflammation associated with chronic kidney injury.


Assuntos
Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Células Mieloides/imunologia , Células Mieloides/patologia , Obstrução Ureteral/imunologia , Obstrução Ureteral/patologia , Injúria Renal Aguda/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Modelos Animais de Doenças , Fibrose/imunologia , Fibrose/prevenção & controle , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Inflamação/imunologia , Inflamação/patologia , Inflamação/prevenção & controle , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/metabolismo , Cultura Primária de Células , Obstrução Ureteral/genética
12.
Am J Physiol Renal Physiol ; 302(9): F1172-9, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22262480

RESUMO

Acute kidney injury (AKI) due to ischemia is an important contributor to the progression of chronic kidney disease (CKD). Key mediators of cellular adaptation to hypoxia are oxygen-sensitive hypoxia-inducible factors (HIF), which are regulated by prolyl-4-hydroxylase domain (PHD)-containing dioxygenases. While activation of HIF protects from ischemic cell death, HIF has been shown to promote fibrosis in experimental models of CKD. The impact of HIF activation on AKI-induced fibrosis has not been defined. Here, we investigated the role of pharmacologic HIF activation in AKI-associated fibrosis and inflammation. We found that pharmacologic inhibition of HIF prolyl hydroxylation before AKI ameliorated fibrosis and prevented anemia, while inhibition of HIF prolyl hydroxylation in the early recovery phase of AKI did not affect short- or long-term clinical outcome. Therefore, preischemic targeting of the PHD/HIF pathway represents an effective therapeutic strategy for the prevention of CKD resulting from AKI, and it warrants further investigation in clinical trials.


Assuntos
Injúria Renal Aguda/prevenção & controle , Fator 1 Induzível por Hipóxia/metabolismo , Rim/patologia , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Fibrose , Hidroxilação/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Xilazina/efeitos adversos
14.
Blood ; 116(16): 3039-48, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20628150

RESUMO

The kidney is the main physiologic source of erythropoietin (EPO) in the adult and responds to decreases in tissue oxygenation with increased EPO production. Although studies in mice with liver-specific or global gene inactivation have shown that hypoxia-inducible factor 2 (Hif-2) plays a major role in the regulation of Epo during infancy and in the adult, respectively, the contribution of renal HIF-2 signaling to systemic EPO homeostasis and the role of extrarenal HIF-2 in erythropoiesis, in the absence of kidney EPO, have not been examined directly. Here, we used Cre-loxP recombination to ablate Hif-2α in the kidney, whereas Hif-2-mediated hypoxia responses in the liver and other Epo-producing tissues remained intact. We found that the hypoxic induction of renal Epo is completely Hif-2 dependent and that, in the absence of renal Hif-2, hepatic Hif-2 takes over as the main regulator of serum Epo levels. Furthermore, we provide evidence that hepatocyte-derived Hif-2 is involved in the regulation of iron metabolism genes, supporting a role for HIF-2 in the coordination of EPO synthesis with iron homeostasis.


Assuntos
Anemia/metabolismo , Eritropoese , Hipóxia/metabolismo , Rim/metabolismo , Fatores de Transcrição/metabolismo , Anemia/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Eritropoetina/metabolismo , Ferro/metabolismo , Rim/patologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética
15.
J Med Case Rep ; 2: 94, 2008 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-18373879

RESUMO

INTRODUCTION: Tenofovir is a potent nucleotide analogue reverse-transcriptase inhibitor used with other antiretroviral agents for the treatment of human immunodeficiency virus (HIV) infection. Despite the absence of renal toxicity observed in the major clinical trials of tenofovir, several case reports of acute renal failure (ARF) and proximal tubule dysfunction have been described. CASE PRESENTATION: We report a patient who developed ARF and Fanconi syndrome during treatment with tenofovir. Despite severe metabolic acidosis associated with a creatinine of 9.8 mg/dL (866 mumol/L), this patient's condition improved on discontinuation of tenofovir treatment without requiring renal replacement therapy. CONCLUSION: Vigilant screening of kidney function is required regularly after initiation of tenofovir due to possible appearance of renal failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...