Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Ocul Surf ; 32: 48-57, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224777

RESUMO

PURPOSE: Short chain fatty acids (SCFAs) produced by gut microbiota are known to play primary roles in gut homeostasis by immunomodulation partially through G-protein coupled receptors (GPR) 43. Using mouse models of TLR ligand induced keratitis, we investigated whether SCFAs and GPR43 play any regulatory roles in the pathogenesis of inflammatory responses in the eye. METHODS: Both human and mouse eyes were labeled with a specific antibody for GPR43 and imaged by a laser scanning confocal microscope. Corneal cups from naïve C57BL/6J (B6) and GPR43 knockout (KO) mice were stimulated with TLR ligands in the presence or absence of sodium butyrate overnight and then processed for RT-PCR assay for expression of GPR43 and cytokines. Keratitis was induced by Poly I:C in wild type (WT) B6, GPR43KO and chimeric mice and the disease severity was evaluated by the corneal fluorescein staining test, and infiltrating cell staining and calculating in corneal whole mount. RESULTS: GPR43 is expressed in both human and mouse eyes and the expression is bidirectionally regulated by TLR ligands and butyrate. Butyrate significantly inhibited inflammation caused by several TLR ligands such as Poly I:C, Flagellin, and CpG-ODN (TLR-3, 5 and 9 agonists, respectively) in WT, but not GPR43KO, mice. Butyrate inhibition of TLR-induced keratitis is mediated by the GPR43 expressed in tissue but not hematopoietic, cells. CONCLUSIONS: This is the first report to demonstrate of the protective effect of SCFAs on microbial keratitis, and the dynamic expression and anti-inflammatory function of GPR43 in the eye. SCFAs can modulate inflammation and immunity in the eye through GPR43.


Assuntos
Modelos Animais de Doenças , Ácidos Graxos Voláteis , Ceratite , Receptores Acoplados a Proteínas G , Animais , Humanos , Camundongos , Córnea/metabolismo , Córnea/patologia , Citocinas/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Ceratite/metabolismo , Ceratite/patologia , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética
2.
Biomolecules ; 13(10)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37892114

RESUMO

Autoimmune diseases caused by T cells can arise from either T-helper 1 (Th1) or T-helper 17 (Th17)-type pathogenic T cells. However, it is unclear whether these two T-cell subsets are influenced by distinct pathogenic factors and whether treatments that are effective for Th1 responses also work for Th17 responses. To compare these two pathogenic responses, we conducted a systematic analysis in a mouse model of experimental autoimmune uveitis (EAU) to identify the factors that promote or inhibit each response and to determine their responses to various treatments. Our study found that the two types of pathogenic responses differ significantly in their pathological progressions and susceptibility to treatments. Specifically, we observed that extracellular adenosine is a crucial pathogenic molecule involved in the pathogenicity of inflammation and T-cell reactivity and that reciprocal interaction between adenosine and gamma delta (γδ) T cells plays a significant role in amplifying Th17 responses in the development of autoimmune diseases. The potential effect of targeting adenosine or adenosine receptors is analyzed regarding whether such targeting constitutes an effective approach to modulating both γδ T-cell responses and the pathogenic Th17 responses in autoimmune diseases.


Assuntos
Doenças Autoimunes , Uveíte , Animais , Camundongos , Adenosina , Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T , Uveíte/patologia , Camundongos Endogâmicos C57BL
3.
Cell Rep ; 42(9): 113054, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37656622

RESUMO

Most mutations in retinitis pigmentosa (RP) arise in rod photoreceptors, but cone photoreceptors, responsible for high-resolution daylight and color vision, are subsequently affected, causing the most debilitating features of the disease. We used mass spectroscopy to follow 13C metabolites delivered to the outer retina and single-cell RNA sequencing to assess photoreceptor transcriptomes. The S cone metabolic transcriptome suggests engagement of the TCA cycle and ongoing response to ROS characteristic of oxidative phosphorylation, which we link to their histone modification transcriptome. Tumor necrosis factor (TNF) and its downstream effector RIP3, which drive ROS generation via mitochondrial dysfunction, are induced and activated as S cones undergo early apoptosis in RP. The long/medium-wavelength (L/M) cone transcriptome shows enhanced glycolytic capacity, which maintains their function as RP progresses. Then, as extracellular glucose eventually diminishes, L/M cones are sustained in long-term dormancy by lactate metabolism.


Assuntos
Células Fotorreceptoras Retinianas Cones , Retinose Pigmentar , Humanos , Células Fotorreceptoras Retinianas Cones/metabolismo , Transcriptoma/genética , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retinose Pigmentar/patologia
4.
Transl Vis Sci Technol ; 12(8): 4, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552202

RESUMO

Purpose: The purpose of this study was to quantify retinal hydration (RH) levels with optical coherence tomography (OCT) and determine the extent of cellular damage resulting from intraretinal fluid alterations. Methods: We took 6.0 mm sections of the human sensory retina that were excised from 18 fresh (<24 hours) donor eyes. They were either exposed to various osmotic stresses between 90 and 305 mOsm or dehydrated under a laminar flow hood. Change in tissue weight was used to calculate the retinal water content (RWC). Image analyses were conducted on OCT between 0 and 180 minutes to assess retinal thickness (RT) and "optically empty areas" (OEAs) representing intraretinal fluid. Correlations were sought among RWC, OEA, RWC, and RT. The effect of RH on retinal cell viability (RCV) was assessed with the Live-Dead Assay. Results: RH demonstrated a stronger correlation with the OEA than plain RT measurements (r = 0.99, P < 0.001). RH-RCV interaction fits well to a bell-shaped curve. A significant proportion of retinal cells (>80%) remained viable despite the change in RH ranging between 0.87 and 1.42 times. This "safe zone" was found to be associated with a 22% increase in OEA (r = 0.99, P < 0.01). Conclusions: OCT has been demonstrated as a valuable tool for assessing RH and can be used for intraretinal fluid content analysis. RH is a better indicator of RCV compared with RT. Computing RH may improve the determination of functional outcome of intravitreal pharmacotherapeutics used for diabetic macular edema and exudative age-related macular degeneration. Translational Relevance: We link basic research and clinical care by assessing retinal hydration's impact on retinal fluid dynamics, macular edema, and cell viability.


Assuntos
Retinopatia Diabética , Edema Macular , Humanos , Edema Macular/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Retinopatia Diabética/diagnóstico por imagem , Sobrevivência Celular , Hidrodinâmica , Retina/diagnóstico por imagem
5.
Biomolecules ; 13(5)2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37238702

RESUMO

Age-related macular degeneration (AMD) is a progressive degenerative disease of the central retina and the leading cause of severe loss of central vision in people over age 50. Patients gradually lose central visual acuity, compromising their ability to read, write, drive, and recognize faces, all of which greatly impact daily life activities. Quality of life is significantly affected in these patients, and there are worse levels of depression as a result. AMD is a complex, multifactorial disease in which age and genetics, as well as environmental factors, all play a role in its development and progression. The mechanism by which these risk factors interact and converge towards AMD are not fully understood, and therefore, drug discovery is challenging, with no successful therapeutic attempt to prevent the development of this disease. In this review, we describe the pathophysiology of AMD and review the role of complement, which is a major risk factor in the development of AMD.


Assuntos
Degeneração Macular , Qualidade de Vida , Humanos , Pessoa de Meia-Idade , Degeneração Macular/tratamento farmacológico , Retina , Proteínas do Sistema Complemento , Fatores de Risco
6.
Curr Res Immunol ; 3: 73-84, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569633

RESUMO

The extracellular level of adenosine increases greatly during inflammation, which modulates immune responses. We have previously reported that adenosine enhances Th17 responses while it suppresses Th1 responses. This study examined whether response of DC to adenosine contributes to the biased effect of adenosine and determined whether adenosine and TLR ligands have counteractive or synergistic effects on DC function. Our results show that adenosine is actively involved in both in vitro and in vivo activation of pathogenic T cells by DCs; however, under adenosine effect DCs' capability of promoting Th1 versus Th17 responses are dissociated. Moreover, activation of A2ARs on DCs inhibits Th1 responses whereas activation of A2BRs on DC enhances Th17 responses. An intriguing observation was that TLR engagement switches the adenosine receptor from A2ARs to A2BRs usage of bone marrow-derived dendritic cells (BMDCs) and adenosine binding to BMDCs via A2BR converts adenosine's anti-to proinflammatory effect. The dual effects of adenosine and TLR ligand on BMDCs synergistically enhances the Th17 responses whereas the dual effect on Th1 responses is antagonistic. The results imply that Th17 responses will gain dominance when inflammatory environment accumulates both TLR ligands and adenosine and the underlying mechanisms include that TLR ligand exposure has a unique effect switching adenosine receptor usage of DCs from A2ARs to A2BRs, via which Th17 responses are promoted. Our observation should improve our understanding on the balance of Th1 and Th17 responses in the pathogenesis of autoimmune and other related diseases.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36188211

RESUMO

Pro- and ant-inflammatory effects of IFN-γ have been repeatedly found in various immune responses, including cancer and autoimmune diseases. In a previous study we showed that the timing of treatment determines the effect of adenosine-based immunotherapy. In this study we examined the role of IFN-γ in pathogenic Th17 responses in experimental autoimmune uveitis (EAU). We observed that IFN-γ has a bidirectional effect on Th17 responses, when tested both in vitro and in vivo. Anti-IFN-γ antibody inhibits Th17 responses when applied in the initial phase of the immune response; however, it enhances the Th17 response if administered in a later phase of EAU. In the current study we showed that IFN-γ is an important immunomodulatory molecule in γδ T cell activation, as well as in Th17 responses. These results should advance our understanding of the regulation of Th17 responses in autoimmunity.

8.
J Immunol ; 208(5): 1224-1231, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101894

RESUMO

γδ T cells are important immunoregulatory cells in experimental autoimmune uveitis (EAU), and the activation status of γδ T cells determines their disease-enhancing or inhibitory effects. Because γδ T cells can be activated via various pathways, we questioned whether the nature of their activation might impact their function. In this study, we show that γδ T cells activated under different inflammatory conditions differ greatly in their functions. Whereas anti-CD3 treatment activated both IFN-γ+ and IL-17+ γδ T cells, cytokines preferentially activated IL-17+ γδ T cells. γδ T cells continued to express high levels of surface CD73 after exposure to inflammatory cytokines, but they downregulated surface CD73 after exposure to dendritic cells. Although both CD73high and CD73low cells have a disease-enhancing effect, the CD73low γδ T cells are less inhibitory. We also show that polarized activation not only applies to αß T cells and myeloid cells, but also to γδ T cells. After activation under Th17-polarizing conditions, γδ T cells predominantly expressed IL-17 (gdT17), but after activation under Th1 polarizing conditions (gdT1) they mainly expressed IFN-γ. The pro-Th17 activity of γδ T cells was associated with gdT17, but not gdT1. Our results demonstrate that the functional activity of γδ T cells is strikingly modulated by their activation level, as well as the pathway through which they were activated.


Assuntos
Interferon gama/imunologia , Interleucina-17/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Th17/imunologia , Uveíte/imunologia , 5'-Nucleotidase/metabolismo , Animais , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia , Células Th1/imunologia , Uveíte/induzido quimicamente , Uveíte/patologia
10.
Curr Res Immunol ; 2: 93-103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34825178

RESUMO

Various pathological conditions are accompanied by release of adenosine triphosphate (ATP) from the intracellular to the extracellular compartment, where it degrades into adenosine and modulates immune responses. Previous studies concluded that both ATP and its degradation product adenosine are important immune-regulatory molecules; ATP acted as a danger signal that promotes immune responses, but adenosine's effect was inhibitory. We show that adenosine receptor ligation plays an important role in balancing Th1 and Th17 pathogenic T cell responses in experimental autoimmune uveitis (EAU). While its effect on Th1 responses is inhibitory, its effect on Th17 responses is enhancing, thereby impacting the balance between Th1 and Th17 responses. Mechanistic studies showed that this effect is mediated via several immune cells, among which γδ T cell activation and dendritic cell differentiation are prominent; adenosine- and γδ-mediated immunoregulation synergistically impact each other's effect. Adenosine receptor ligation augments the activation of γδ T cells, which is an important promoter for Th17 responses and has a strong effect on dendritic cell (DC) differentiation, tipping the balance from generation of DCs that stimulate Th1 responses to those that stimulate Th17 responses. The knowledge acquired in this study should improve our understanding of the immune-regulatory effect of extracellular ATP-adenosine metabolism and improve treatment for autoimmune diseases caused by both Th1-and Th17-type pathogenic T cells.

11.
Clin Exp Ophthalmol ; 49(9): 1069-1077, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34455666

RESUMO

BACKGROUND: Exosomes participate in intercellular communication and act as important molecular vehicles in the regulation of numerous physiological and pathological processes, including autoimmune development. The role of circulating exosomes in the development of autoimmune uveitis is unknown. In this study, using the rat model of experimental autoimmune uveitis, which has clinical and histological features of pan uveitis in man, we evaluated the immunoregulatory function of circulating exosomes. METHODS: Experimental autoimmune uveitis was induced in Lewis rats either immunised with interphotoreceptor retinoid-binding protein R16 peptides or injected with activated R16-specific T cells. The disease incidence and severity were examined by indirect fundoscopy and flow cytometry. Circulating exosomes were isolated from peripheral blood of naïve and Day 14 R16 immunised Lewis rats. The effect of exosomes on specific T cells was evaluated by R16-specific T cell proliferation, cytokine production and recurrent uveitis induction. RESULTS: Circulating exosomes derived from active immunised uveitis rats selectively inhibited immune responses of R16-specific T cells in vitro. Vaccination of naïve rats with these exosomes reduced the incidence of recurrent uveitis in an antigen-specific manner. Antigen-specific uveitogenic T cells reduced IFN-γ production and increased IL-10 after vaccination. CONCLUSIONS: Circulating exosomes in autoimmune uveitis have the potential to be a novel treatment for recurrent autoimmune uveitis.


Assuntos
Doenças Autoimunes , Exossomos , Uveíte , Animais , Doenças Autoimunes/prevenção & controle , Modelos Animais de Doenças , Proteínas do Olho , Inflamação , Ratos , Ratos Endogâmicos Lew , Uveíte/prevenção & controle , Vacinação
12.
J Immunol ; 207(1): 153-161, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34127521

RESUMO

Adenosine is an important regulatory molecule of the immune response. We have previously reported that treatment of experimental autoimmune uveitis (EAU)-prone mice with an adenosine-degrading enzyme (adenosine deaminase) prohibited EAU development by inhibiting Th17 pathogenic T cell responses. To further validate that the targeting of adenosine or adenosine receptors effectively modulates Th17 responses, we investigated the effect of adenosine receptor antagonists. In this study, we show that the A2AR antagonist SCH 58261 (SCH) effectively modulates aberrant Th17 responses in induced EAU. However, timing of the treatment is important. Whereas SCH inhibits EAU when administered during the active disease stage, it did not do so if administered during quiescent disease stages, thus implying that the existing immune status influences the therapeutic effect. Mechanistic studies showed that inhibition of γδ T cell activation is crucially involved in adenosine-based treatment. Adenosine is an important costimulator of γδ T cell activation, which is essential for promoting Th17 responses. During ongoing disease stages, adenosine synergizes with existing high levels of cytokines, leading to augmented γδ T cell activation and Th17 responses, but in quiescent disease stages, when existing cytokine levels are low, adenosine does not enhance γδ T cell activation. Our results demonstrated that blockade of the synergistic effect between adenosine and inflammatory cytokines at active disease stages can ameliorate high-degree γδ T cell activation and, thus, suppress Th17 pathogenic T cell responses.


Assuntos
Adenosina/imunologia , Doenças Autoimunes/imunologia , Uveíte/imunologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
PLoS One ; 16(5): e0251677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33984046

RESUMO

Cannabidiol (CBD) exhibits anti-inflammatory and neuroprotective properties and is suggested to be effective in the pre-clinical and clinical treatment of illnesses of the central nervous system (CNS). Two major types of CNS glial cells, astrocytes and microglia, play critical roles in the development and pathogenesis of CNS diseases. However, the mechanisms by which CBD plays an anti-inflammatory and neuroprotective role for these glial cells have not been fully elucidated. In this study, we examined the effects of CBD on the inflammatory response of mouse primary astrocytes and microglia. We also investigated whether the effect of CBD on cytokine release is mediated by the G protein coupled receptor 3 (GPR3), which was recently identified as a novel receptor for CBD. Our results showed that CBD inhibited inflammatory responses of astrocytes and microglia stimulated with lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) ligand in vitro and in vivo. In addition, CBD reduced the phosphorylation of STAT3 and NF-κB signaling pathways in LPS-stimulated astrocytes. However, the inhibitory effect of CBD on pro-inflammatory cytokine production was independent of GPR3 expression in both types of glial cells. Thus, although CBD is effective in ameliorating the activation of astrocytes and microglia, its mechanism of action still requires further study. Our data support the concept that CBD may have therapeutic potential for neurological disorders that involve neuroinflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Astrócitos/efeitos dos fármacos , Canabidiol/farmacologia , Microglia/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Astrócitos/imunologia , Astrócitos/metabolismo , Canabidiol/uso terapêutico , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Camundongos , Microglia/imunologia , Microglia/metabolismo , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
14.
Mol Immunol ; 134: 13-24, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33689926

RESUMO

Our previous studies demonstrated that γδ T cells have a strong regulatory effect on Th17 autoimmune responses in experimental autoimmune uveitis (EAU). In the current study, we show that reciprocal interactions between mouse γδ T cells and dendritic cells (DCs) played a major role in γδ regulation of Th17 responses. Mouse bone marrow-derived dendritic cells (BMDCs) acquired an increased ability to enhance Th17 autoimmune responses after exposure to γδ T cells; meanwhile, after exposure, a significant portion of the BMDCs expressed CD73 - a molecule that is fundamental in the conversion of immunostimulatory ATP into immunosuppressive adenosine. Functional studies showed that CD73+ BMDCs were uniquely effective in stimulating the Th17 responses, as compared to CD73- BMDCs; and activated γδ T cells are much more effective than non-activated γδ T cells at inducing CD73+ BMDCs. As a result, activated γδ T cells acquired greater Th17-enhancing activity. Treatment of BMDCs with the CD73-specific antagonist APCP abolished the enhancing effect of the BMDCs. γδ T cells more effectively induced CD73+ BMDCs from the BMDCs that were pre-exposed to TLR ligands, and the response was further augmented by adenosine. Moreover, BMDCs acquired increased ability to stimulate γδ activation after pre-exposure to TLR ligands and adenosine. Our results demonstrated that both extra-cellular adenosine and TLR ligands are critical factors in augmented Th17 responses in this autoimmune disease, and the reciprocal interactions between γδ T cells and DCs play a major role in promoting Th17 responses.


Assuntos
Doenças Autoimunes/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Th17/imunologia , Animais , Células da Medula Óssea/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Uveíte/imunologia
15.
Exp Eye Res ; 206: 108520, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33617852

RESUMO

Short chain fatty acids (SCFAs) are produced by gut microbiota as fermentation products of digestion-resistant oligosaccharides and fibers. Their primary roles are functioning as major energy sources for colon cells and assisting in gut homeostasis by immunomodulation. Recent evidence suggests that they affect various organs both at cellular and molecular levels, and regulate functions in distance sites including gene expression, cell proliferation, cell differentiation, apoptosis and inflammation. In this study, we examined whether SCFAs are present in the mouse eye and whether SCFAs affect inflammatory responses of the eye and retinal astrocytes (RACs). We observed that intra-peritoneal injected SCFAs were detected in the eye and reduced intraocular inflammation induced by lipopolysaccharide (LPS). Moreover, SCFAs displayed two disparate effects on LPS-stimulated RACs - namely, cytokine and chemokine production was reduced, but the ability to activate T cells was enhanced. Our results support the existence of gut-eye cross talk and suggest that SCFAs can cross the blood-eye-barrier via the systemic circulation. If applied at high concentrations, SCFAs may reduce inflammation and impact cellular functions in the intraocular milieu.


Assuntos
Astrócitos/patologia , Ácidos Graxos Voláteis/farmacologia , Inflamação/terapia , Células Ganglionares da Retina/patologia , Uveíte/terapia , Animais , Proliferação de Células , Modelos Animais de Doenças , Endotoxinas/toxicidade , Feminino , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Uveíte/metabolismo , Uveíte/patologia
16.
Sci Transl Med ; 13(580)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568518

RESUMO

Nucleic acids are used in many therapeutic modalities, including gene therapy, but their ability to trigger host immune responses in vivo can lead to decreased safety and efficacy. In the case of adeno-associated viral (AAV) vectors, studies have shown that the genome of the vector activates Toll-like receptor 9 (TLR9), a pattern recognition receptor that senses foreign DNA. Here, we engineered AAV vectors to be intrinsically less immunogenic by incorporating short DNA oligonucleotides that antagonize TLR9 activation directly into the vector genome. The engineered vectors elicited markedly reduced innate immune and T cell responses and enhanced gene expression in clinically relevant mouse and pig models across different tissues, including liver, muscle, and retina. Subretinal administration of higher-dose AAV in pigs resulted in photoreceptor pathology with microglia and T cell infiltration. These adverse findings were avoided in the contralateral eyes of the same animals that were injected with the engineered vectors. However, intravitreal injection of higher-dose AAV in macaques, a more immunogenic route of administration, showed that the engineered vector delayed but did not prevent clinical uveitis, suggesting that other immune factors in addition to TLR9 may contribute to intraocular inflammation in this model. Our results demonstrate that linking specific immunomodulatory noncoding sequences to much longer therapeutic nucleic acids can "cloak" the vector from inducing unwanted immune responses in multiple, but not all, models. This "coupled immunomodulation" strategy may widen the therapeutic window for AAV therapies as well as other DNA-based gene transfer methods.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Imunidade Inata , Camundongos , Suínos
17.
Graefes Arch Clin Exp Ophthalmol ; 259(5): 1103-1111, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33417094

RESUMO

PURPOSE: Posterior ocular trauma and the subsequent fibrotic retinal complication termed proliferative vitreoretinopathy (PVR) are leading causes of blindness in children and young adults. A previous study suggested that changes occurring within the first month post-trauma can lead to development of PVR later. The aim of this study was to examine the effect of dasatinib, a tyrosine kinase inhibitor clinically used to treat chronic myeloid leukemia, on fibrotic changes occurring within the first month following ocular trauma. METHODS: A previously established swine ocular trauma model that mimics both contusion and penetrating injuries was used. Dasatinib was administered on days 4 and 18 post-trauma via intravitreal injection of either bolus solution or suspension of a sustained release system incorporated in biodegradable poly (lactic-co-glycolic acid) (PLGA) nanoparticles. Animals were followed up to day 32, and the development of traction full-thickness fold in the posterior retina was assessed. RESULTS: A full-thickness retinal fold extending from the wound site developed in 3 out of 4 control eyes injected with PLGA nanoparticles alone at 1 month. Administration of dasatinib solution had little preventative effect with 6 out of 7 eyes developing a fold. In contrast, dasatinib-incorporated PLGA nanoparticle injection significantly reduced the incidence of fold to 1 out of 10 eyes. CONCLUSIONS: Injection of dasatinib-incorporated PLGA significantly reduced early fibrotic retinal changes which eventually lead to PVR following posterior ocular trauma. Thus, our sustained dasatinib release system can potentially be used to both prevent and/or broaden the surgical treatment window for PVR.


Assuntos
Traumatismos Oculares , Vitreorretinopatia Proliferativa , Animais , Dasatinibe/uso terapêutico , Traumatismos Oculares/etiologia , Traumatismos Oculares/prevenção & controle , Injeções Intravítreas , Retina , Suínos , Vitreorretinopatia Proliferativa/tratamento farmacológico , Vitreorretinopatia Proliferativa/etiologia , Vitreorretinopatia Proliferativa/prevenção & controle
19.
Taiwan J Ophthalmol ; 11(4): 331-335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35070660

RESUMO

Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. It is a leading cause of visual disability, with an incidence of ~1 in 7000 persons. Although most RP is nonsyndromic, 20%-30% of patients with RP also have an associated nonocular condition. The gene mutations responsible for RP occur overwhelmingly in rod photoreceptors. Visual loss frequently begins with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors. Although the visual disability from rod dysfunction is significant, it is the subsequent loss of central vision later in life due to cone degeneration that is catastrophic. Until recently, the reason for cone dysfunction in RP was unknown. However, it is now recognized that cones degenerate, losing outer segment (OS) synthesis and inner segment (IS) disassembly because of glucose starvation following rod demise. Rod OS phagocytosis by the apical microvilli of retinal pigment epithelium is necessary to transport glucose from the choriocapillaris to the subretinal space. Although cones lose OS with the onset of rod degeneration in RP, regardless of the gene mutation in rods, cone nuclei remain viable for years (i.e. enter cone dormancy) so that therapies aimed at reversing glucose starvation can prevent and/or recover cone function and central vision.

20.
Taiwan J Ophthalmol ; 11(4): 348-351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35070662

RESUMO

Rhodopsin-mediated autosomal dominant retinitis pigmentosa (RP) is the most common cause of RP in North America. There is no proven cure for the disease, and multiple approaches are being studied. Gene therapy is an evolving field in medicine and ophthalmology. In this review, we will go over the basic concept of gene therapy and the different types of gene therapy that are currently being studied to treat this disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...