Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(11): 111102, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28949220

RESUMO

The rotation curves of spiral galaxies exhibit a diversity that has been difficult to understand in the cold dark matter (CDM) paradigm. We show that the self-interacting dark matter (SIDM) model provides excellent fits to the rotation curves of a sample of galaxies with asymptotic velocities in the 25-300 km/s range that exemplify the full range of diversity. We assume only the halo concentration-mass relation predicted by the CDM model and a fixed value of the self-interaction cross section. In dark-matter-dominated galaxies, thermalization due to self-interactions creates large cores and reduces dark matter densities. In contrast, thermalization leads to denser and smaller cores in more luminous galaxies and naturally explains the flatness of rotation curves of the highly luminous galaxies at small radii. Our results demonstrate that the impact of the baryons on the SIDM halo profile and the scatter from the assembly history of halos as encoded in the concentration-mass relation can explain the diverse rotation curves of spiral galaxies.

2.
Phys Rev Lett ; 116(4): 041302, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26871320

RESUMO

Astrophysical observations spanning dwarf galaxies to galaxy clusters indicate that dark matter (DM) halos are less dense in their central regions compared to expectations from collisionless DM N-body simulations. Using detailed fits to DM halos of galaxies and clusters, we show that self-interacting DM (SIDM) may provide a consistent solution to the DM deficit problem across all scales, even though individual systems exhibit a wide diversity in halo properties. Since the characteristic velocity of DM particles varies across these systems, we are able to measure the self-interaction cross section as a function of kinetic energy and thereby deduce the SIDM particle physics model parameters. Our results prefer a mildly velocity-dependent cross section, from σ/m≈2 cm^{2}/g on galaxy scales to σ/m≈0.1 cm^{2}/g on cluster scales, consistent with the upper limits from merging clusters. Our results dramatically improve the constraints on SIDM models and may allow the masses of both DM and dark mediator particles to be measured even if the dark sector is completely hidden from the standard model, which we illustrate for the dark photon model.

3.
Phys Rev Lett ; 114(21): 211303, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26066426

RESUMO

Observations by the Fermi Large-Area Telescope have uncovered a significant γ-ray excess directed toward the Milky Way Galactic Center. There has been no detection of a similar signal in the stacked population of Milky Way dwarf spheroidal galaxies. Additionally, astronomical observations indicate that dwarf galaxies and other faint galaxies are less dense than predicted by the simplest cold dark matter models. We show that a self-interacting dark matter model with a particle mass of roughly 50 GeV annihilating to the mediator responsible for the strong self-interaction can simultaneously explain all three observations. The mediator is necessarily unstable, and its mass must be below about 100 MeV in order to decrease the dark matter density of faint galaxies. If the mediator decays to electron-positron pairs with a cross section on the order of the thermal relic value, then we find that these pairs can up-scatter the interstellar radiation field in the Galactic center and produce the observed γ-ray excess.

4.
Phys Rev Lett ; 113(2): 021302, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062162

RESUMO

Self-interacting dark matter (SIDM) models have been proposed to solve the small-scale issues with the collisionless cold dark matter paradigm. We derive equilibrium solutions in these SIDM models for the dark matter halo density profile including the gravitational potential of both baryons and dark matter. Self-interactions drive dark matter to be isothermal and this ties the core sizes and shapes of dark matter halos to the spatial distribution of the stars, a radical departure from previous expectations and from cold dark matter predictions. Compared to predictions of SIDM-only simulations, the core sizes are smaller and the core densities are higher, with the largest effects in baryon-dominated galaxies. As an example, we find a core size around 0.3 kpc for dark matter in the Milky Way, more than an order of magnitude smaller than the core size from SIDM-only simulations, which has important implications for indirect searches of SIDM candidates.

5.
Phys Rev Lett ; 107(13): 131304, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026840

RESUMO

Primordial non-Gaussianity is a crucial test of inflationary cosmology. We consider the impact of non-Gaussianity on the ionization power spectrum from 21 cm emission at the epoch of reionization. We focus on the power spectrum on large scales at redshifts of 7 to 8 and explore the expected constraint on the local non-Gaussianity parameter f(NL) for current and next-generation 21 cm experiments. We show that experiments such as SKA and MWA could measure f(NL) values of order 10. This can be improved by an order of magnitude with a fast-Fourier transform telescope like Omniscope.

6.
Phys Rev Lett ; 104(15): 151301, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20481979

RESUMO

Dark matter with Sommerfeld-enhanced annihilation has been proposed to explain observed cosmic ray positron excesses in the 10 GeV to TeV energy range. We show that the required enhancement implies thermal relic densities that are too small to be all of dark matter. We also show that the dark matter is sufficiently self-interacting that observations of elliptical galactic dark matter halos exclude large Sommerfeld enhancement for light force carriers. Resonant Sommerfeld enhancement does not modify these conclusions, and the astrophysical boosts required to resolve these discrepancies are disfavored, especially when significant self-interactions suppress halo substructure.

7.
Nature ; 454(7208): 1096-7, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18756252

RESUMO

The Milky Way has at least twenty-three known satellite galaxies that shine with luminosities ranging from about a thousand to a billion times that of the Sun. Half of these galaxies were discovered in the past few years in the Sloan Digital Sky Survey, and they are among the least luminous galaxies in the known Universe. A determination of the mass of these galaxies provides a test of galaxy formation at the smallest scales and probes the nature of the dark matter that dominates the mass density of the Universe. Here we use new measurements of the velocities of the stars in these galaxies to show that they are consistent with them having a common mass of about 10(7) within their central 300 parsecs. This result demonstrates that the faintest of the Milky Way satellites are the most dark-matter-dominated galaxies known, and could be a hint of a new scale in galaxy formation or a characteristic scale for the clustering of dark matter.

8.
Phys Rev Lett ; 91(24): 241301, 2003 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-14683103

RESUMO

Distortions of cosmic microwave background temperature and polarization maps caused by gravitational lensing, observable with high angular resolution and high sensitivity, can be used to measure the neutrino mass. Assuming two massless species and one with mass m(nu), we forecast sigma(m(nu))=0.15 eV from the Planck satellite and sigma(m(nu))=0.04 eV from observations with twice the angular resolution and approximately 20 times the sensitivity. A detection is likely at this higher sensitivity since the observation of atmospheric neutrino oscillations requires Deltam(2)(nu) greater, similar (0.04 eV)(2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...