Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1824, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38245574

RESUMO

This study conducts an extensive comparative analysis of computational intelligence approaches aimed at predicting the compressive strength (CS) of concrete, utilizing two non-destructive testing (NDT) methods: the rebound hammer (RH) and the ultrasonic pulse velocity (UPV) test. In the ensemble learning approach, the six most popular algorithms (Adaboost, CatBoost, gradient boosting tree (GBT), random forest (RF), stacking, and extreme gradient boosting (XGB)) have been used to develop the prediction models of CS of concrete based on NDT. The ML models have been developed using a total of 721 samples, of which 111 were cast in the laboratory, 134 were obtained from in-situ testing, and the other samples were gathered from the literature. Among the three categories of analytical models-RH models, UPV models, and combined RH and UPV models; seven, ten, and thirteen models have been used respectively. AdaBoost, CatBoost, GBT, RF, Stacking, and XGB models have been used to improve the accuracy and dependability of the analytical models. The RH-M5, UPV-M6, and C-M6 (combined UPV and RH model) models were found with highest performance level amongst all the analytical models. The MAPE value of XGB was observed to be 84.37%, 83.24%, 77.33%, 59.46%, and 81.08% lower than AdaBoost, CatBoost, GBT, RF, and stacking, respectively. The performance of XGB model has been found best than other soft computing techniques and existing traditional predictive models.

2.
Sci Rep ; 13(1): 2857, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36807317

RESUMO

The ability of machine learning (ML) techniques to forecast the shear strength of corroded reinforced concrete beams (CRCBs) is examined in the present study. These ML techniques include artificial neural networks (ANN), adaptive-neuro fuzzy inference systems (ANFIS), decision tree (DT) and extreme gradient boosting (XGBoost). A thorough databank with 140 data points about the shear capacity of CRCBs with various degrees of corrosion was compiled after a review of the literature. The inputs parameters of the implemented models are the width of the beam, the effective depth of the beam, concrete compressive strength (CS), yield strength of reinforcement, percentage of longitudinal reinforcement, percentage of transversal reinforcement (stirrups), yield strength of stirrups, stirrups spacing, shear span-to-depth ratio (a/d), corrosion degree of main reinforcement, and corrosion degree of stirrups. The coefficient of determination of the ANN, ANFIS, DT, and XGBoost models are 0.9811, 0.9866, 0.9799, and 0.9998, respectively. The MAPE of the XGBoost model is 99.39%, 99.16%, and 99.28% lower than ANN, ANFIS, and DT models. According to the results of the sensitivity examination, the shear strength of the CRCBs is most affected by the depth of the beam, stirrups spacing, and the a/d. The graphical displays of the Taylor graph, violin plot, and multi-histogram plot additionally support the XGBoost model's dependability and precision. In addition, this model demonstrated good experimental data fit when compared to other analytical and ML models. Accurate prediction of shear strength using the XGBoost approach confirmed that this approach is capable of handling a wide range of data and can be used as a model to predict shear strength with higher accuracy. The effectiveness of the developed XGBoost model is higher than the existing models in terms of precision, economic considerations, and safety, as indicated by the comparative study.

3.
Materials (Basel) ; 15(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36499792

RESUMO

The bond strength between concrete and corroded steel reinforcement bar is one of the main responsible factors that affect the ultimate load-carrying capacity of reinforced concrete (RC) structures. Therefore, the prediction of accurate bond strength has become an important parameter for the safety measurements of RC structures. However, the analytical models are not enough to estimate the bond strength, as they are built using various assumptions and limited datasets. The machine learning (ML) techniques named artificial neural network (ANN) and support vector machine (SVM) have been used to estimate the bond strength between concrete and corroded steel reinforcement bar. The considered input parameters in this research are the surface area of the specimen, concrete cover, type of reinforcement bars, yield strength of reinforcement bars, concrete compressive strength, diameter of reinforcement bars, bond length, water/cement ratio, and corrosion level of reinforcement bars. These parameters were used to build the ANN and SVM models. The reliability of the developed ANN and SVM models have been compared with twenty analytical models. Moreover, the analyzed results revealed that the precision and efficiency of the ANN and SVM models are higher compared with the analytical models. The radar plot and Taylor diagrams have also been utilized to show the graphical representation of the best-fitted model. The proposed ANN model has the best precision and reliability compared with the SVM model, with a correlation coefficient of 0.99, mean absolute error of 1.091 MPa, and root mean square error of 1.495 MPa. Researchers and designers can apply the developed ANN model to precisely estimate the steel-to-concrete bond strength.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36554744

RESUMO

The emerging novel variants and re-merging old variants of SARS-CoV-2 make it critical to study the transmission probability in mixed-mode ventilated office environments. Artificial neural network (ANN) and curve fitting (CF) models were created to forecast the R-Event. The R-Event is defined as the anticipated number of new infections that develop in particular events occurring over the course of time in any defined space. In the spring and summer of 2022, real-time data for an office environment were collected in India in a mixed-mode ventilated office space in a composite climate. The performances of the proposed CF and ANN models were compared with respect to traditional statistical indicators, such as the correlation coefficient, RMSE, MAE, MAPE, NS index, and a20-index, in order to determine the merit of the two approaches. Thirteen input features, namely the indoor temperature (TIn), indoor relative humidity (RHIn), area of opening (AO), number of occupants (O), area per person (AP), volume per person (VP), CO2 concentration (CO2), air quality index (AQI), outer wind speed (WS), outdoor temperature (TOut), outdoor humidity (RHOut), fan air speed (FS), and air conditioning (AC), were selected to forecast the R-Event as the target. The main objective was to determine the relationship between the CO2 level and R-Event, ultimately producing a model for forecasting infections in office building environments. The correlation coefficients for the CF and ANN models in this case study were 0.7439 and 0.9999, respectively. This demonstrates that the ANN model is more accurate in R-Event prediction than the curve fitting model. The results show that the proposed ANN model is reliable and significantly accurate in forecasting the R-Event values for mixed-mode ventilated offices.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , SARS-CoV-2 , Dióxido de Carbono , COVID-19/epidemiologia , Clima , Redes Neurais de Computação , Poluição do Ar em Ambientes Fechados/análise , Ventilação
5.
Sustain Cities Soc ; 70: 102942, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33889481

RESUMO

INTRODUCTION: The advent of COVID-19 has impinged millions of people. The increased concern of the virus spread in confined spaces due to meteorological factors has sequentially fostered the need to improve indoor air quality. OBJECTIVE: This paper aims to review control measures and preventive sustainable solutions for the future that can deliberately help in bringing down the impact of declined air quality and prevent future biological attacks from affecting the occupant's health. METHODOLOGY: Anontology chart is constructed based on the set objectives and review of all the possible measures to improve the indoor air quality taking into account the affecting parameters has been done. OBSERVATIONS: An integrated approach considering non-pharmaceutical and engineering control measures together for a healthy indoor environment should be contemplated rather than discretizing the available solutions. Maintaining social distance by reducing occupant density and implementing a modified ventilation system with advance filters for decontamination of viral load can help in sustaining healthy indoor air quality. CONCLUSION: The review paper in the main, provides a brief overview of all the improvement techniques bearing in mind thermal comfort and safety of occupants and looks for a common ground for all the technologies based on literature survey and offers recommendation for a sustainable future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...