Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36772122

RESUMO

In this study, a new method for the inline measurement of depth profiles on a continuously moving sample with laser-induced breakdown spectroscopy is presented. The ablation profile is generated by ablating the sample with a burst of laser pulses, where the emission spectrum of each laser-induced plasma is analyzed on a spectrometer. A Q-switched Nd:YAG laser at 1064 nm with 10 mJ pulse energy, 6 ns pulse duration and 100 Hz repetition rate was used. The focusing lens for the pulsed laser and a deflection mirror are mounted on a moving stage, which is precisely aligned in height and orientation to the movement of a conveyor belt transporting the sample. The stage speed is actively synchronized to the speed of the moving sample by a wheel encoder to assure that all laser pulses hit the same position at the sample. The feasibility for depth-resolved elemental analysis on moving samples is shown for coatings of electrode foils for lithium-ion batteries. The coating homogeneity was measured at a speed up to 17 m/min. For a 100 µm coating, 10 laser pulses were needed to measure a full depth profile.

2.
Sensors (Basel) ; 22(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433409

RESUMO

We study the capability of nanosecond laser-induced breakdown spectroscopy (ns-LIBS) for depth-resolved concentration measurements of Li-Ion battery cathodes. With our system, which is optimized for quality control applications in the production line, we pursue the goal to unveil manufacturing faults and irregularities during the production process of cathodes as early as possible. Femtosecond laser-induced breakdown spectroscopy (fs-LIBS) is widely considered to be better suited for depth-resolved element analysis. Nevertheless, the small size and intensity of the plasma plume, non-thermal energy distribution in the plasma and high investment costs of fs-LIBS make ns-LIBS more attractive for inline application in the industrial surrounding. The system, presented here for the first time, is able to record quasi-depth-resolved relative concentration profiles for carbon, nickel, manganese, cobalt, lithium and aluminum which are the typical elements used in the binder/conductive additive, the active cathode material and the current collector. LIBS often causes high variations in signal intensity from pulse to pulse, so concentration determination is, in general, conducted on the average of many pulses. We show that the spot-to-spot variations we measure are governed by the microstructure of the cathode foil and are not an expression of the limited precision of the LIBS setup.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...