Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
bioRxiv ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38370710

RESUMO

Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of structurally identified and yet-undefined metabolites across tissue cryosections. While numerous software packages enable pixel-by-pixel imaging of individual metabolites, the research community lacks a discovery tool that images all metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs informs discovery of unanticipated molecules contributing to shared metabolic pathways, uncovers hidden metabolic heterogeneity across cells and tissue subregions, and indicates single-timepoint flux through pathways of interest. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling and instrument drift, markedly enhances spatial image resolution, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent tool to enhance knowledge obtained from current spatial metabolite profiling technologies.

2.
J Dev Biol ; 12(1)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38390956

RESUMO

Hox genes encode transcription factors whose roles in patterning animal body plans during embryonic development are well-documented. Multiple studies demonstrate that Hox genes continue to act in adult cells, in normal differentiation, in regenerative processes, and, with abnormal expression, in diverse types of cancers. However, surprisingly little is known about the regulatory mechanisms that govern Hox gene expression in specific cell types, as they differentiate during late embryonic development, and in the adult organism. The murine Hoxc8 gene determines the identity of multiple skeletal elements in the lower thoracic and lumbar region and continues to play a role in the proliferation and differentiation of cells in cartilage as the skeleton matures. This study was undertaken to identify regulatory elements in the Hoxc8 gene that control transcriptional activity, specifically in cartilage-producing chondrocytes. We report that an enhancer comprising two 416 and 224 bps long interacting DNA elements produces reporter gene activity when assayed on a heterologous transcriptional promoter in transgenic mice. This enhancer is distinct in spatial, temporal, and molecular regulation from previously identified regulatory sequences in the Hoxc8 gene that control its expression in early development. The identification of a tissue-specific Hox gene regulatory element now allows mechanistic investigations into Hox transcription factor expression and function in differentiating cell types and adult tissues and to specifically target these cells during repair processes and regeneration.

3.
Front Cell Dev Biol ; 11: 1273641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928898

RESUMO

Introduction: Maternal diabetes during pregnancy is well known to be associated with a higher risk for structural birth defects in the offspring. Recent searches for underlying mechanisms have largely focused on aberrant processes in the embryo itself, although prior research in rodent models implicated dysfunction also of the visceral yolk sac. The objective of our research was to investigate both tissues within the conceptus simultaneously. Methods: We conducted unbiased transcriptome profiling by RNA sequencing on pairs of individual yolk sacs and their cognate embryos, using the non-obese diabetic (NOD) mouse model. The analysis was performed at gestational day 8.5 on morphologically normal specimen to circumvent confounding by defective development. Results: Even with large sample numbers (n = 33 in each group), we observed considerable variability of gene expression, primarily driven by exposure to maternal diabetes, and secondarily by developmental stage of the embryo. Only a moderate number of genes changed expression in the yolk sac, while in the embryo, the exposure distinctly influenced the relationship of gene expression levels to developmental progression, revealing a possible role for altered cell cycle regulation in the response. Also affected in embryos under diabetic conditions were genes involved in cholesterol biosynthesis and NAD metabolism pathways. Discussion: Exposure to maternal diabetes during gastrulation changes transcriptomic profiles in embryos to a substantially greater effect than in the corresponding yolk sacs, indicating that despite yolk sac being of embryonic origin, different mechanisms control transcriptional activity in these tissues. The effects of maternal diabetes on expression of many genes that are correlated with developmental progression (i.e. somite stage) highlight the importance of considering developmental maturity in the interpretation of transcriptomic data. Our analyses identified cholesterol biosynthesis and NAD metabolism as novel pathways not previously implicated in diabetic pregnancies. Both NAD and cholesterol availability affect a wide variety of cellular signaling processes, and can be modulated by diet, implying that prevention of adverse outcomes from diabetic pregnancies may require broad interventions, particularly in the early stages of pregnancy.

4.
Med Res Arch ; 11(6)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37885852

RESUMO

CRISPR-mediated genome editing in vivo can be accompanied by prolonged stability of the Cas9 protein in mouse embryos. Then, genome edited variant alleles will be induced as long as Cas9 protein is active, and unmodified wildtype target loci are available. The corollary is that CRISPR-modified alleles that arise after the first zygotic cell division potentially could be distributed asymmetrically to the cell lineages that are specified early during morula and blastocyst development. This has practical implications for the investigation of F0 generation individuals, as cells in embryonic and extraembryonic tissues, such as the visceral yolk sac, might end up inheriting different genotypes. We here investigated the hypothetically possible scenarios by genotyping individual F0 CRISPants and their associated visceral yolk sacs in parallel. In all cases, we found that embryonic genotype was accurately reflected by yolk sac genotyping, with the two tissues indicating genetic congruence, even when the conceptus was a mosaic of cells with distinct allele configurations. Nevertheless, low abundance of a variant allele may represent a private mutation occurring only in the yolk sac, and in those rare cases, additional genotyping to determine the mutational status of the embryo proper is warranted.

5.
Front Cell Dev Biol ; 11: 1073807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936697

RESUMO

Maternal diabetes and obesity in pregnancy are well-known risk factors for structural birth defects, including neural tube defects and congenital heart defects. Progeny from affected pregnancies are also predisposed to developing cardiometabolic disease in later life. Based upon in vitro embryo cultures of rat embryos, it was postulated that nutrient uptake by the yolk sac is deficient in diabetic pregnancies. In contrast, using two independent mouse models of maternal diabetes, and a high-fat diet-feeding model of maternal obesity, we observed excessive lipid accumulation at 8.5 days in the yolk sac. The numbers as well as sizes of intracellular lipid droplets were increased in yolk sacs of embryos from diabetic and obese pregnancies. Maternal metabolic disease did not affect expression of lipid transporter proteins, including ApoA1, ApoB and SR-B1, consistent with our earlier report that expression of glucose and fatty acid transporter genes was also unchanged in diabetic pregnancy-derived yolk sacs. Colocalization of lipid droplets with lysosomes was significantly reduced in the yolk sacs from diabetic and obese pregnancies compared to yolk sacs from normal pregnancies. We therefore conclude that processing of lipids is defective in pregnancies affected by maternal metabolic disease, which may lead to reduced availability of lipids to the developing embryo. The possible implications of insufficient supply of lipids -and potentially of other nutrients-to the embryos experiencing adverse pregnancy conditions are discussed.

6.
Front Cell Dev Biol ; 10: 777844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478964

RESUMO

Maternal diabetes in early pregnancy increases the risk for birth defects in the offspring, particularly heart, and neural tube defects. While elevated glucose levels are characteristic for diabetic pregnancies, these are also accompanied by hyperlipidemia, indicating altered nutrient availability. We therefore investigated whether changes in the expression of nutrient transporters at the conception site or in the early post-implantation embryo could account for increased birth defect incidence at later developmental stages. Focusing on glucose and fatty acid transporters, we measured their expression by RT-PCR in the spontaneously diabetic non-obese mouse strain NOD, and in pregnant FVB/N mouse strain dams with Streptozotocin-induced diabetes. Sites of expression in the deciduum, extra-embryonic, and embryonic tissues were determined by RNAscope in situ hybridization. While maternal diabetes had no apparent effects on levels or cellular profiles of expression, we detected striking cell-type specificity of particular nutrient transporters. For examples, Slc2a2/Glut2 expression was restricted to the endodermal cells of the visceral yolk sac, while Slc2a1/Glut1 expression was limited to the mesodermal compartment; Slc27a4/Fatp4 and Slc27a3/Fatp3 also exhibited reciprocally exclusive expression in the endodermal and mesodermal compartments of the yolk sac, respectively. These findings not only highlight the significance of nutrient transporters in the intrauterine environment, but also raise important implications for the etiology of birth defects in diabetic pregnancies, and for strategies aimed at reducing birth defects risk by nutrient supplementation.

8.
Genes (Basel) ; 13(1)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35052470

RESUMO

Adverse exposures during pregnancy have been shown to contribute to susceptibility for chronic diseases in offspring. Maternal diabetes during pregnancy is associated with higher risk of pregnancy complications, structural birth defects, and cardiometabolic health impairments later in life. We showed previously in a mouse model that the placenta is smaller in diabetic pregnancies, with reduced size of the junctional zone and labyrinth. In addition, cell migration is impaired, resulting in ectopic accumulation of spongiotrophoblasts within the labyrinth. The present study had the goal to identify the mechanisms underlying the growth defects and trophoblast migration abnormalities. Based upon gene expression assays of 47 candidate genes, we were able to attribute the reduced growth of diabetic placenta to alterations in the Insulin growth factor and Serotonin signaling pathways, and provide evidence for Prostaglandin signaling deficiencies as the possible cause for abnormal trophoblast migration. Furthermore, our results reinforce the notion that the exposure to maternal diabetes has particularly pronounced effects on gene expression at midgestation time points. An implication of these findings is that mechanisms underlying developmental programming act early in pregnancy, during placenta morphogenesis, and before the conceptus switches from histiotrophic to hemotrophic nutrition.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Gestacional/fisiopatologia , Dieta , Regulação da Expressão Gênica , Fenômenos Fisiológicos da Nutrição Materna , Placenta/patologia , Animais , Feminino , Perfilação da Expressão Gênica , Camundongos , Placenta/metabolismo , Gravidez
9.
Sci Rep ; 11(1): 23732, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887431

RESUMO

Mendelian genetics poses practical limitations on the number of mutant genes that can be investigated simultaneously for their roles in embryonic development in the mouse. While CRISPR-based gene editing of multiple genes at once offers an attractive alternative strategy, subsequent breeding or establishment of permanent mouse lines will rapidly segregate the different mutant loci again. Direct phenotypic analysis of genomic edits in an embryonic lethal gene in F0 generation mice, or F0 mouse embryos, circumvents the need for breeding or establishment of mutant mouse lines. In the course of genotyping a large cohort of F0 CRISPants, where the embryonic lethal gene T/brachyury was targeted, we noted the presence of multiple CRISPR-induced modifications in individual embryos. Using long-read single-molecule Nanopore sequencing, we identified a wide variety of deletions, ranging up to 3 kb, that would not have been detected or scored as wildtype with commonly used genotyping methods that rely on subcloning and short-read or Sanger sequencing. Long-read sequencing results were crucial for accurate genotype-phenotype correlation in our F0 CRISPants. We thus demonstrate feasibility of screening manipulated F0 embryos for mid-gestation phenotypic consequences of CRISPR-induced mutations without requiring derivation of permanent mouse lines.


Assuntos
Sistemas CRISPR-Cas , Desenvolvimento Embrionário/genética , Edição de Genes , Genes Letais , Alelos , Animais , Sequência de Bases , Engenharia Genética , Genótipo , Mutação INDEL , Camundongos , Mutagênese , Fenótipo , RNA Guia de Cinetoplastídeos
10.
PLoS One ; 14(11): e0224754, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31774824

RESUMO

Diabetes in the mother during pregnancy is a risk factor for birth defects and perinatal complications and can affect long-term health of the offspring through developmental programming of susceptibility to metabolic disease. We previously showed that Streptozotocin-induced maternal diabetes in mice is associated with altered cell differentiation and with smaller size of the placenta. Placental size and fetal size were affected by maternal diet in this model, and maternal diet also modulated the risk for neural tube defects. In the present study, we sought to determine the extent to which these effects might be mediated through altered expression of nutrient transporters, specifically glucose and fatty acid transporters in the placenta. Our results demonstrate that expression of several transporters is modulated by both maternal diet and maternal diabetes. Diet was revealed as the more prominent determinant of nutrient transporter expression levels, even in pregnancies with uncontrolled diabetes, consistent with the role of diet in placental and fetal growth. Notably, the largest changes in nutrient transporter expression levels were detected around midgestation time points when the placenta is being formed. These findings place the critical time period for susceptibility to diet exposures earlier than previously appreciated, implying that mechanisms underlying developmental programming can act on placenta formation.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteínas de Membrana Transportadoras/metabolismo , Nutrientes/metabolismo , Placenta/patologia , Gravidez em Diabéticas/metabolismo , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Ácidos Graxos/metabolismo , Feminino , Desenvolvimento Fetal , Glucose/metabolismo , Humanos , Camundongos , Gravidez , Gravidez em Diabéticas/etiologia , Gravidez em Diabéticas/patologia , Estreptozocina/toxicidade
11.
Birth Defects Res ; 111(14): 999-1012, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30451383

RESUMO

BACKGROUND: Impairments in cell migration during vertebrate gastrulation lead to structural birth defects, such as heart defects and neural tube defects. These defects are more frequent in progeny from diabetic pregnancies, and we have recently provided evidence that maternal diabetes leads to impaired migration of embryonic mesodermal cells in a mouse model of diabetic pregnancy. METHODS: We here report the isolation of primary cell lines from normal and diabetes-exposed embryos of the nonobese diabetic mouse strain, and characterization of their energy metabolism and expression of nutrient transporter genes by quantitative real-time PCR. RESULTS: Expression levels of several genes in the glucose transporter and fatty acid transporter gene families were altered in diabetes-exposed cells. Notably, primary cells from embryos with prior in vivo exposure to maternal diabetes exhibited reduced capacity for cell migration in vitro. CONCLUSIONS: Primary cells isolated from diabetes-exposed embryos retained a "memory" of their in vivo exposure, manifesting in cell migration impairment. Thus, we have successfully established an in vitro experimental model for the mesoderm migration defects observed in diabetes-exposed mouse embryos.


Assuntos
Movimento Celular/efeitos dos fármacos , Glucose/metabolismo , Gravidez em Diabéticas/fisiopatologia , Animais , Movimento Celular/fisiologia , Diabetes Mellitus Experimental , Diabetes Gestacional , Modelos Animais de Doenças , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos/embriologia , Camundongos Endogâmicos NOD , Defeitos do Tubo Neural/genética , Fator de Transcrição PAX3/genética , Gravidez , Fatores de Transcrição/genética
13.
PLoS One ; 11(1): e0146019, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26800342

RESUMO

The process of patterning along the anterior-posterior axis in vertebrates is highly conserved. The function of Hox genes in the axis patterning process is particularly well documented for bone development in the vertebral column and the limbs. We here show that Hoxb6, in skeletal elements at the cervico-thoracic junction, controls multiple independent aspects of skeletal pattern, implicating discrete developmental pathways as substrates for this transcription factor. In addition, we demonstrate that Hoxb6 function is subject to modulation by genetic factors. These results establish Hox-controlled skeletal pattern as a quantitative trait modulated by gene-gene interactions, and provide evidence that distinct modifiers influence the function of conserved developmental genes in fundamental patterning processes.


Assuntos
Padronização Corporal/genética , Desenvolvimento Ósseo/genética , Vértebras Cervicais/anormalidades , Proteínas de Homeodomínio/genética , Locos de Características Quantitativas/genética , Costelas/anormalidades , Animais , Vértebras Cervicais/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Característica Quantitativa Herdável , Costelas/embriologia
14.
Sci Rep ; 5: 16917, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26593875

RESUMO

Failure to close the neural tube results in birth defects, with severity ranging from spina bifida to lethal anencephaly. Few genetic risk factors for neural tube defects are known in humans, highlighting the critical role of environmental risk factors, such as maternal diabetes. Yet, it is not well understood how altered maternal metabolism interferes with embryonic development, and with neurulation in particular. We present evidence from two independent mouse models of diabetic pregnancy that identifies impaired migration of nascent mesodermal cells in the primitive streak as the morphogenetic basis underlying the pathogenesis of neural tube defects. We conclude that perturbed gastrulation not only explains the neurulation defects, but also provides a unifying etiology for the broad spectrum of congenital malformations in diabetic pregnancies.


Assuntos
Diabetes Gestacional/genética , Proteínas do Tecido Nervoso/genética , Placa Neural/metabolismo , Defeitos do Tubo Neural/genética , Animais , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Gastrulação/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microdissecção e Captura a Laser , Camundongos , Camundongos Endogâmicos NOD , Proteínas do Tecido Nervoso/metabolismo , Placa Neural/embriologia , Placa Neural/patologia , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Gravidez
15.
Birth Defects Res C Embryo Today ; 105(1): 53-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25783684

RESUMO

INTRODUCTION: Pregestational and gestational diabetes mellitus (PGDM; GDM) are significant health concerns because they are associated with an increased rate of malformations and maternal health complications. METHODS: We reviewed the data that help us to understand the effects of diabetes in pregnancy. RESULTS: Diabetic embryopathy can affect any developing organ system, but cardiovascular and neural tube defects are among the most frequent anomalies. Other complications include preeclampsia, preterm delivery, fetal growth abnormalities, and perinatal mortality. Neurodevelopmental studies on offspring of mothers with diabetes demonstrated increased rate of Gross and Fine motor abnormalities, of Attention Deficit Hyperactivity Disorder, learning difficulties, and possibly also Autism Spectrum Disorder. The mechanisms underlying the effects of maternal hyperglycemia on the developing fetus may involve increased oxidative stress, hypoxia, apoptosis, and epigenetic changes. Evidence for epigenetic changes are the following: not all progeny are affected and not to the same extent; maternal diet may influence pregnancy outcomes; and maternal diabetes alters embryonic transcriptional profiles and increases the variation between transcriptomic profiles as a result of altered gene regulation. Research in animal models has revealed that maternal hyperglycemia is a teratogen, and has helped uncover potential therapeutic targets which, when blocked, can mitigate or ameliorate the negative effects of diabetes on the developing fetus. CONCLUSIONS: Tight metabolic control, surveillance, and labor management remain the cornerstone of care for pregnant women with diabetes, but advances in the field indicate that new treatments to protect the mother and baby are not far from becoming clinical realities.


Assuntos
Anormalidades Congênitas/etiologia , Complicações do Diabetes , Desenvolvimento Embrionário/fisiologia , Epigênese Genética/fisiologia , Doenças Fetais/etiologia , Gravidez em Diabéticas/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Feminino , Humanos , Gravidez , Resultado da Gravidez
16.
Physiol Rep ; 3(2)2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25713331

RESUMO

Dcpp2, Prrt1, and Has1 are plausible candidate genes for the Mnic1 (macronutrient intake-carbohydrate) locus on mouse chromosome 17, based on their map positions and sequence variants, documented expression in salivary glands, and the important role of saliva in oral food processing and taste. We investigated the effects of genotype and diet on gene expression in salivary glands (parotid, submandibular, sublingual) of carbohydrate-preferring, C57BL6J.CAST/EiJ-17.1 subcongenic mice compared to fat-preferring wild-type C57BL/6J. To achieve accurate normalization of real-time quantitative RT-PCR data, we evaluated multiple reference genes to identify the most stably expressed control genes in salivary gland tissues, and then used geometric averaging to produce a reliable normalization factor. Gene expression was measured in mice fed different diets: (1) rodent chow, (2) macronutrient selection diets, (3) high-fat diet, and (4) low-fat diet. In addition, we measured salivary hyaluronan concentrations. All three genes showed strain differences in expression, in at least one major salivary gland, and diet effects were observed in two glands. Dcpp2 expression was limited primarily to sublingual gland, and strongly decreased in B6.CAST-17.1 subcongenic mice compared to wild-type B6, regardless of diet. In contrast, both genotype and diet affected Prrt1 and Has1 expression, in a gland-specific manner, for example, Prrt1 expression in the parotid gland alone was strongly reduced in both mouse strains when fed macronutrient selection diet compared to chow. Notably, we discovered an association between diet composition and salivary hyaluronan content. These results demonstrate robust effects of genetic background and diet composition on candidate gene expression in mouse salivary glands.

17.
PLoS One ; 9(10): e110424, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330228

RESUMO

The specific genes regulating the quantitative variation in macronutrient preference and food intake are virtually unknown. We fine mapped a previously identified mouse chromosome 17 region harboring quantitative trait loci (QTL) with large effects on preferential macronutrient intake-carbohydrate (Mnic1), total kilcalories (Kcal2), and total food volume (Tfv1) using interval-specific strains. These loci were isolated in the [C57BL/6J.CAST/EiJ-17.1-(D17Mit19-D17Mit50); B6.CAST-17.1] strain, possessing a ∼ 40.1 Mb region of CAST DNA on the B6 genome. In a macronutrient selection paradigm, the B6.CAST-17.1 subcongenic mice eat 30% more calories from the carbohydrate-rich diet, ∼ 10% more total calories, and ∼ 9% more total food volume per body weight. In the current study, a cross between carbohydrate-preferring B6.CAST-17.1 and fat-preferring, inbred B6 mice was used to generate a subcongenic-derived F2 mapping population; genotypes were determined using a high-density, custom SNP panel. Genetic linkage analysis substantially reduced the 95% confidence interval for Mnic1 (encompassing Kcal2 and Tfv1) from 40.1 to 29.5 Mb and more precisely established its boundaries. Notably, no genetic linkage for self-selected fat intake was detected, underscoring the carbohydrate-specific effect of this locus. A second key finding was the separation of two energy balance QTLs: Mnic1/Kcal2/Tfv1 for food intake and a newly discovered locus regulating short term body weight gain. The Mnic1/Kcal2/Tfv1 QTL was further de-limited to 19.0 Mb, based on the absence of nutrient intake phenotypes in subcongenic HQ17IIa mice. Analyses of available sequence data and gene ontologies, along with comprehensive expression profiling in the hypothalamus of non-recombinant, cast/cast and b6/b6 F2 controls, focused our attention on candidates within the QTL interval. Zfp811, Zfp870, and Btnl6 showed differential expression and also contain stop codons, but have no known biology related to food intake regulation. The genes Decr2, Ppard and Agapt1 are more appealing candidates because of their involvement in lipid metabolism and down-regulation in carbohydrate-preferring animals.


Assuntos
Metabolismo dos Carboidratos/genética , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Ingestão de Energia/genética , Loci Gênicos , Genoma , Animais , Ligação Genética , Camundongos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
18.
Birth Defects Res A Clin Mol Teratol ; 100(8): 608-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25115487

RESUMO

Gastrulation is the process in which the three germ layers are formed that contribute to the formation of all major tissues in the developing embryo. We here review mouse genetic models in which defective gastrulation leads to mesoderm insufficiencies in the embryo. Depending on severity of the abnormalities, the outcomes range from incompatible with embryonic survival to structural birth defects, such as heart defects, spina bifida, or caudal dysgenesis. The combined evidence from the mutant models supports the notion that these congenital anomalies can originate from perturbations of mesoderm specification, epithelial-mesenchymal transition, and mesodermal cell migration. Knowledge about the molecular pathways involved may help to improve strategies for the prevention of major structural birth defects.


Assuntos
Transição Epitelial-Mesenquimal/genética , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Mesoderma/embriologia , Linha Primitiva/embriologia , Anormalidades Múltiplas/embriologia , Animais , Adesão Celular/genética , Movimento Celular , Modelos Animais de Doenças , Cardiopatias Congênitas/embriologia , Meningocele/embriologia , Mesoderma/metabolismo , Camundongos , Região Sacrococcígea/anormalidades , Região Sacrococcígea/embriologia , Disrafismo Espinal/embriologia , Via de Sinalização Wnt/genética , Proteína Wnt3/genética
19.
Reprod Toxicol ; 45: 94-104, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24491834

RESUMO

The phenomenon of partial or incomplete penetrance is common to many paradigms of exposure to teratogens, where only some of the exposed individuals exhibit developmental defects. We here argue that the most widely used experimental approaches in reproductive toxicology do not take partial penetrance into account, and are thus likely to miss differences between affected and unaffected individuals that contribute to susceptibility for teratogenesis. We propose that focus on the variation between exposed individuals could help to discover factors that may play a causative role for abnormal developmental processes that occur with incomplete penetrance.


Assuntos
Anormalidades Induzidas por Medicamentos/genética , Regulação da Expressão Gênica no Desenvolvimento , Teratogênicos/toxicidade , Animais , Variação Genética , Camundongos , Risco
20.
Am J Med Genet C Semin Med Genet ; 163C(4): 333-56, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24124024

RESUMO

Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient-gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity.


Assuntos
Ácido Fólico/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Morfogênese , Defeitos do Tubo Neural/metabolismo , Anencefalia/genética , Anencefalia/metabolismo , Anencefalia/fisiopatologia , Animais , Fenda Labial/genética , Fenda Labial/metabolismo , Fenda Labial/fisiopatologia , Fissura Palatina/complicações , Fissura Palatina/genética , Fissura Palatina/mortalidade , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Diabetes Gestacional/fisiopatologia , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Interação Gene-Ambiente , Humanos , Camundongos , Defeitos do Tubo Neural/fisiopatologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...