Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Sci Immunol ; 9(97): eado5295, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996008

RESUMO

αß T cell receptor (TCR) V(D)J genes code for billions of TCR combinations. However, only some appear on peripheral T cells in any individual because, to mature, thymocytes must react with low affinity but not high affinity with thymus expressed major histocompatibility (MHC)/peptides. MHC proteins are very polymorphic. Different alleles bind different peptides. Therefore, any individual might express many different MHC alleles to ensure that some peptides from an invader are bound to MHC and activate T cells. However, most individuals express limited numbers of MHC alleles. To explore this, we compared the TCR repertoires of naïve CD4 T cells in mice expressing one or two MHC alleles. Unexpectedly, the TCRs in heterozygotes were less diverse that those in the sum of their MHC homozygous relatives. Our results suggest that thymus negative selection cancels out the advantages of increased thymic positive selection in the MHC heterozygotes.


Assuntos
Linfócitos T CD4-Positivos , Heterozigoto , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Complexo Principal de Histocompatibilidade/imunologia , Complexo Principal de Histocompatibilidade/genética , Camundongos Endogâmicos C57BL , Timo/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Camundongos Transgênicos
2.
Proc Natl Acad Sci U S A ; 121(20): e2320268121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709934

RESUMO

Insulin is a central autoantigen in the pathogenesis of T1D, and thymic epithelial cell expression of insulin under the control of the Autoimmune Regulator (Aire) is thought to be a key component of maintaining tolerance to insulin. In spite of this general working model, direct detection of this thymic selection on insulin-specific T cells has been somewhat elusive. Here, we used a combination of highly sensitive T cell receptor transgenic models for detecting thymic selection and sorting and sequencing of Insulin-specific CD4+ T cells from Aire-deficient mice as a strategy to further define their selection. This analysis revealed a number of unique t cell receptor (TCR) clones in Aire-deficient hosts with high affinity for insulin/major histocompatibility complex (MHC) ligands. We then modeled the thymic selection of one of these clones in Aire-deficient versus wild-type hosts and found that this model clone could escape thymic negative selection in the absence of thymic Aire. Together, these results suggest that thymic expression of insulin plays a key role in trimming and removing high-affinity insulin-specific T cells from the repertoire to help promote tolerance.


Assuntos
Proteína AIRE , Insulina , Receptores de Antígenos de Linfócitos T , Timo , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Clonais , Tolerância Imunológica , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Timo/imunologia , Timo/metabolismo , Timo/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232627

RESUMO

The SARS-CoV-2 Delta and Lambda variants had been named variants of concern (VOC) and variants of interest (VOI), respectively, by the World Health Organization (WHO). Both variants have two mutations in the spike receptor binding domain (RBD) region, with L452R and T478K mutations in the Delta variant, and L452Q and F490S mutations in the Lambda variant. We used surface plasmon resonance (SPR)-based technology to evaluate the effect of these mutations on human angiotensin-converting enzyme 2 (ACE2) and Bamlanivimab binding. The affinity for the RBD ligand, ACE2, of the Delta RBD is approximately twice as strong as that of the wild type RBD, an increase that accounts for the increased infectivity of the Delta variant. On the other hand, in spite of its amino acid changes, the Lambda RBD has similar affinity to ACE2 as the wild type RBD. The protective anti-wild type RBD antibody Bamlanivimab binds very poorly to the Delta RBD and not at all to the Lambda RBD. Nevertheless, serum antibodies from individuals immunized with the BNT162b2 vaccine were found to bind well to the Delta RBD, but less efficiently to the Lambda RBD in contrast. As a result, the blocking ability of ACE2 binding by serum antibodies was decreased more by the Lambda than the Delta RBD. Titers of sera from BNT162b2 mRNA vaccinated individuals dropped 3-fold within six months of vaccination regardless of whether the target RBD was wild type, Delta or Lambda. This may account partially for the fall off with time in the protective effect of vaccines against any variant.


Assuntos
COVID-19 , SARS-CoV-2 , Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade Humoral , Ligantes , Mutação , RNA Mensageiro , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas , Vacinas de mRNA
4.
Front Immunol ; 13: 825256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154144

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has lasted more than 2 years with over 260 million infections and 5 million deaths worldwide as of November 2021. To combat the virus, monoclonal antibodies blocking the virus binding to human receptor, the angiotensin converting enzyme 2 (ACE2), have been approved to treat the infected patients. Inactivated whole virus or the full-length virus spike encoding adenovirus or mRNA vaccines are being used to immunize the public. However, SARS-CoV-2 variants are emerging. These, to some extent, escape neutralization by the therapeutic antibodies and vaccine-induced immunity. Thus, breakthrough infections by SARS-CoV-2 variants have been reported in previously virus-infected or fully vaccinated individuals. The receptor binding domain (RBD) of the virus spike protein reacts with host ACE2, leading to the entry of the virus into the cell. It is also the major antigenic site of the virus, with more than 90% of broadly neutralizing antibodies from either infected patients or vaccinated individuals targeting the spike RBD. Therefore, mutations in the RBD region are effective ways for SARS-CoV-2 variants to gain infectivity and escape the immunity built up by the original vaccines or infections. In this review, we focus on the impact of RBD mutations in SARS-CoV-2 variants of concern (VOC) and variants of interest (VOI) on ACE2 binding affinity and escape of serum antibody neutralization. We also provide protein structure models to show how the VOC and VOI RBD mutations affect ACE2 binding and allow escape of the virus from the therapeutic antibody, bamlanivimab.


Assuntos
SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Humanos , Mutação
6.
J Allergy Clin Immunol ; 149(2): 767-781.e6, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34331993

RESUMO

BACKGROUND: The thymus is a glandular organ that is essential for the formation of the adaptive immune system by educating developing T cells. The thymus is most active during childhood and involutes around the time of adolescence, resulting in a severe reduction or absence of naive T-cell output. The ability to generate a patient-derived human thymus would provide an attractive research platform and enable the development of novel cell therapies. OBJECTIVES: This study sought to systematically evaluate signaling pathways to develop a refined direct differentiation protocol that generates patient-derived thymic epithelial progenitor cells from multiple induced pluripotent stem cells (iPSCs) that can further differentiate into functional patient-derived thymic epithelial cells on transplantation into athymic nude mice. METHODS: Directed differentiation of iPSC generated TEPs that were transplanted into nude mice. Between 14 and 19 weeks posttransplantation, grafts were removed and analyzed by flow cytometry, quantitative PCR, bulk RNA sequencing, and single-cell RNA sequencing for markers of thymic-cell and T-cell development. RESULTS: A direct differentiation protocol that allows the generation of patient-derived thymic epithelial progenitor cells from multiple iPSC lines is described. On transplantation into athymic nude mice, patient-derived thymic epithelial progenitor cells further differentiate into functional patient-derived thymic epithelial cells that can facilitate the development of T cells. Single-cell RNA sequencing analysis of iPSC-derived grafts shows characteristic thymic subpopulations and patient-derived thymic epithelial cell populations that are indistinguishable from TECs present in primary neonatal thymus tissue. CONCLUSIONS: These findings provide important insights and resources for researchers focusing on human thymus biology.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Linfócitos T/fisiologia , Timo/citologia , Animais , Diferenciação Celular , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Humanos , Camundongos , Análise de Sequência de RNA , Timo/fisiologia
7.
bioRxiv ; 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34462744

RESUMO

The newly emerging variants of SARS-CoV-2 from India (Delta variant) and South America (Lambda variant) have led to a higher infection rate of either vaccinated or unvaccinated people. We found that sera from Pfizer-BioNTech vaccine remain high reactivity toward the receptor binding domain (RBD) of Delta variant while it drops dramatically toward that of Lambda variant. Interestingly, the overall titer of antibodies of Pfizer-BioNTech vaccinated individuals drops 3-fold after 6 months, which could be one of major reasons for breakthrough infections, emphasizing the importance of potential third boost shot. While a therapeutic antibody, Bamlanivimab, decreases binding affinity to Delta variant by ~20 fold, it fully lost binding to Lambda variant. Structural modeling of complexes of RBD with human receptor, Angiotensin Converting Enzyme 2 (ACE2), and Bamlanivimab suggest the potential basis of the change of binding. The data suggest possible danger and a potential surge of Lambda variant in near future.

8.
Diabetes ; 70(11): 2580-2594, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34462258

RESUMO

Throughout evolution, proinsulin has exhibited significant sequence variation in both C-peptide and insulin moieties. As the proinsulin coding sequence evolves, the gene product continues to be under selection pressure both for ultimate insulin bioactivity and for the ability of proinsulin to be folded for export through the secretory pathway of pancreatic ß-cells. The substitution proinsulin-R(B22)E is known to yield a bioactive insulin, although R(B22)Q has been reported as a mutation that falls within the spectrum of mutant INS-gene-induced diabetes of youth. Here, we have studied mice expressing heterozygous (or homozygous) proinsulin-R(B22)E knocked into the Ins2 locus. Neither females nor males bearing the heterozygous mutation developed diabetes at any age examined, but subtle evidence of increased proinsulin misfolding in the endoplasmic reticulum is demonstrable in isolated islets from the heterozygotes. Moreover, males have indications of glucose intolerance, and within a few weeks of exposure to a high-fat diet, they developed frank diabetes. Diabetes was more severe in homozygotes, and the development of disease paralleled a progressive heterogeneity of ß-cells with increasing fractions of proinsulin-rich/insulin-poor cells as well as glucagon-positive cells. Evidently, subthreshold predisposition to proinsulin misfolding can go undetected but provides genetic susceptibility to diet-induced ß-cell failure.


Assuntos
Diabetes Mellitus/induzido quimicamente , Proinsulina/metabolismo , Dobramento de Proteína , Substituição de Aminoácidos , Animais , Diabetes Mellitus/genética , Dieta Hiperlipídica , Feminino , Predisposição Genética para Doença , Intolerância à Glucose , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese , Proinsulina/genética
9.
MAbs ; 13(1): 1919285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34074219

RESUMO

The newly emerging variants of SARS-CoV-2 from South Africa (B.1.351/501Y.V2) and Brazil (P.1/501Y.V3) have led to a higher infection rate and reinfection of COVID-19 patients. We found that the mutations K417N, E484K, and N501Y within the receptor-binding domains (RBDs) of the virus could confer ~2-fold higher binding affinity to the human receptor, angiotensin converting enzyme 2 (ACE2), compared to the wildtype RBD. The mutated version of RBD also completely abolishes the binding of bamlanivimab, a therapeutic antibody, in vitro. Detailed analysis shows that the ~10-fold gain of binding affinity between ACE2 and Y501-RBD, which also exits in the high contagious variant B.1.1.7/501Y.V1 from the United Kingdom, is compromised by additional introduction of the K417/N/T mutation. Mutation of E484K leads to the loss of bamlanivimab binding to RBD, although this mutation does not affect the binding between RBD and ACE2.


Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Antivirais/metabolismo , COVID-19/virologia , Mutação , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Antivirais/uso terapêutico , Sítios de Ligação , COVID-19/diagnóstico , Interações Hospedeiro-Patógeno , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Tratamento Farmacológico da COVID-19
10.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074778

RESUMO

Tumors frequently express unmutated self-tumor-associated antigens (self-TAAs). However, trial results using self-TAAs as vaccine targets against cancer are mixed, often attributed to deletion of T cells with high-affinity receptors (TCRs) for self-TAAs during T cell development. Mutating these weak self-TAAs to produce higher affinity, effective vaccines is challenging, since the mutations may not benefit all members of the broad self-TAA-specific T cell repertoire. We previously identified a common weak murine self-TAA that we converted to a highly effective antitumor vaccine by a single amino acid substitution. In this case the modified and natural self-TAAs still raised very similar sets of CD8 T cells. Our structural studies herein show that the modification of the self-TAA resulted in a subtle change in the major histocompatibility complex I-TAA structure. This amino acid substitution allowed a dramatic conformational change in the peptide during subsequent TCR engagement, creating a large increase in TCR affinity and accounting for the efficacy of the modified self-TAA as a vaccine. These results show that carefully selected, well-characterized modifications to a poorly immunogenic self-TAA can rescue the immune response of the large repertoire of weakly responding natural self-TAA-specific CD8 T cells, driving them to proliferate and differentiate into functional effectors. Subsequently, the unmodified self-TAA on the tumor cells, while unable to drive this response, is nevertheless a sufficient target for the CD8 cytotoxic effectors. Our results suggest a pathway for more efficiently identifying variants of common self-TAAs, which could be useful in vaccine development, complementing other current nonantigen-specific immunotherapies.


Assuntos
Antígenos de Neoplasias/imunologia , Autoantígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias Experimentais/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/prevenção & controle , Células Sf9 , Spodoptera
11.
Front Immunol ; 12: 669986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986758

RESUMO

The T cell antigens driving autoimmune Type 1 Diabetes (T1D) have been pursued for more than three decades. When diabetogenic CD4 T cell clones and their relevant MHCII antigen presenting alleles were first identified in rodents and humans, the path to discovering the peptide epitopes within pancreatic beta cell proteins seemed straightforward. However, as experimental results accumulated, definitive data were often absent or controversial. Work within the last decade has helped to clear up some of the controversy by demonstrating that a number of the important MHCII presented epitopes are not encoded in the natural beta cell proteins, but in fact are fusions between peptide fragments derived from the same or different proteins. Recently, the mechanism for generating these MHCII diabetogenic chimeric epitopes has been attributed to a form of reverse proteolysis, called transpeptidation, a process that has been well-documented in the production of MHCI presented epitopes. In this mini-review we summarize these data and their implications for T1D and other autoimmune responses.


Assuntos
Doenças Autoimunes/imunologia , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Epitopos de Linfócito T , Ilhotas Pancreáticas/imunologia , Animais , Apresentação de Antígeno , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Linfócitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Peptidil Transferases/metabolismo
13.
Sci China Life Sci ; 64(12): 2144-2152, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33740187

RESUMO

Cytotoxic T cells targeting cancer neoantigens harboring driver mutations can lead to durable tumor regression in an HLAI-dependent manner. However, it is difficult to extend the population of patients who are eligible for neoantigen-based immunotherapy, as immunogenic neoantigen-HLA pairs are rarely shared across different patients. Thus, a way to find other human leukocyte antigen (HLA) alleles that can also present a clinically effective neoantigen is needed. Recently, neoantigen-based immunotherapy targeting the KRAS G12D mutation in patients with HLA-C*08:02 has shown effectiveness. In a proof-of-concept study, we proposed a combinatorial strategy (the combination of phylogenetic and structural analyses) to find potential HLA alleles that could also present KRAS G12D neoantigen. Compared to in silico binding prediction, this strategy avoids the uneven accuracy across different HLA alleles. Our findings extend the population of patients who are potentially eligible for immunotherapy targeting the KRAS G12D mutation. Additionally, we provide an alternative way to predict neoantigen-HLA pairs, which maximizes the clinical usage of shared neoantigens.


Assuntos
Antígenos de Neoplasias/genética , Antígenos HLA-C/genética , Mutação , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Antígenos de Neoplasias/imunologia , Epitopos , Antígenos HLA-C/metabolismo , Antígenos HLA-C/ultraestrutura , Humanos , Imunoterapia , Complexo Principal de Histocompatibilidade , Neoplasias/imunologia , Filogenia , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/ultraestrutura
14.
Oncoimmunology ; 10(1): 1868130, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33537173

RESUMO

Genetic mutations lead to the production of mutated proteins from which peptides are presented to T cells as cancer neoantigens. Evidence suggests that T cells that target neoantigens are the main mediators of effective cancer immunotherapies. Although algorithms have been used to predict neoantigens, only a minority are immunogenic. The factors that influence neoantigen immunogenicity are not completely understood. Here, we classified human neoantigen/neopeptide data into three categories based on their TCR-pMHC binding events. We observed a conservative mutant orientation of the anchor residue from immunogenic neoantigens which we termed the "NP" rule. By integrating this rule with an existing prediction algorithm, we found improved performance in neoantigen prioritization. To better understand this rule, we solved several neoantigen/MHC structures. These structures showed that neoantigens that follow this rule not only increase peptide-MHC binding affinity but also create new TCR-binding features. These molecular insights highlight the value of immune-based classification in neoantigen studies and may enable the design of more effective cancer immunotherapies.


Assuntos
Antígenos de Neoplasias , Neoplasias , Antígenos de Neoplasias/genética , Humanos , Imunoterapia , Mutação , Neoplasias/genética , Linfócitos T
15.
bioRxiv ; 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33619479

RESUMO

We generated several versions of the receptor binding domain (RBD) of the Spike protein with mutations existing within newly emerging variants from South Africa and Brazil. We found that the mutant RBD with K417N, E484K, and N501Y exchanges has higher binding affinity to the human receptor compared to the wildtype RBD. This mutated version of RBD also completely abolishes the binding to a therapeutic antibody, Bamlanivimab, in vitro .

16.
J Clin Invest ; 131(9)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33630763

RESUMO

Discovering dominant epitopes for T cells, particularly CD4+ T cells, in human immune-mediated diseases remains a significant challenge. Here, we used bronchoalveolar lavage (BAL) cells from HLA-DP2-expressing patients with chronic beryllium disease (CBD), a debilitating granulomatous lung disorder characterized by accumulations of beryllium-specific (Be-specific) CD4+ T cells in the lung. We discovered lung-resident CD4+ T cells that expressed a disease-specific public CDR3ß T cell receptor motif and were specific to Be-modified self-peptides derived from C-C motif ligand 4 (CCL4) and CCL3. HLA-DP2-CCL/Be tetramer staining confirmed that these chemokine-derived peptides represented major antigenic targets in CBD. Furthermore, Be induced CCL3 and CCL4 secretion in the lungs of mice and humans. In a murine model of CBD, the addition of LPS to Be oxide exposure enhanced CCL4 and CCL3 secretion in the lung and significantly increased the number and percentage of CD4+ T cells specific for the HLA-DP2-CCL/Be epitope. Thus, we demonstrate a direct link between Be-induced innate production of chemokines and the development of a robust adaptive immune response to those same chemokines presented as Be-modified self-peptides, creating a cycle of innate and adaptive immune activation.


Assuntos
Beriliose/imunologia , Berílio/toxicidade , Linfócitos T CD4-Positivos/imunologia , Quimiocina CCL3/imunologia , Quimiocina CCL4/imunologia , Pulmão/imunologia , Animais , Antígenos , Beriliose/genética , Beriliose/patologia , Linfócitos T CD4-Positivos/patologia , Quimiocina CCL3/genética , Quimiocina CCL4/genética , Doença Crônica , Feminino , Cadeias beta de HLA-DP/genética , Cadeias beta de HLA-DP/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Pulmão/patologia , Masculino , Camundongos
17.
bioRxiv ; 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33564771

RESUMO

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is causing a world-wide pandemic. A variant of SARS-COV-2 (20I/501Y.V1) recently discovered in the United Kingdom has a single mutation from N501 to Y501 within the receptor binding domain (Y501-RBD), of the Spike protein of the virus. This variant is much more contagious than the original version (N501-RBD). We found that this mutated version of RBD binds to human Angiotensin Converting Enzyme 2 (ACE2) a ~10 times more tightly than the native version (N501-RBD). Modeling analysis showed that the N501Y mutation would allow a potential aromatic ring-ring interaction and an additional hydrogen bond between the RBD and ACE2. However, sera from individuals immunized with the Pfizer-BioNTech vaccine still efficiently block the binding of Y501-RBD to ACE2 though with a slight compromised manner by comparison with their ability to inhibit binding to ACE2 of N501-RBD. This may raise the concern whether therapeutic anti-RBD antibodies used to treat COVID-19 patients are still efficacious. Nevertheless, a therapeutic antibody, Bamlanivimab, still binds to the Y501-RBD as efficiently as its binds to N501-RBD.

18.
Immunology ; 162(1): 68-83, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931017

RESUMO

Memory T cells respond rapidly in part because they are less reliant on a heightened levels of costimulatory molecules. This enables rapid control of secondary infecting pathogens but presents challenges to efforts to control or silence memory CD4 T cells, for example in antigen-specific tolerance strategies for autoimmunity. We have examined the transcriptional and functional consequences of reactivating memory CD4 T cells in the absence of an adjuvant. We find that memory CD4 T cells generated by infection or immunisation survive secondary activation with antigen delivered without adjuvant, regardless of their location in secondary lymphoid organs or peripheral tissues. These cells were, however, functionally altered following a tertiary immunisation with antigen and adjuvant, proliferating poorly but maintaining their ability to produce inflammatory cytokines. Transcriptional and cell cycle analysis of these memory CD4 T cells suggests they are unable to commit fully to cell division potentially because of low expression of DNA repair enzymes. In contrast, these memory CD4 T cells could proliferate following tertiary reactivation by viral re-infection. These data indicate that antigen-specific tolerogenic strategies must examine multiple parameters of Tcell function, and provide insight into the molecular mechanisms that may lead to deletional tolerance of memory CD4 T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Tolerância Imunológica/imunologia , Memória Imunológica/imunologia , Animais , Antígenos/imunologia , Autoimunidade/imunologia , Ciclo Celular/imunologia , Proliferação de Células/fisiologia , Citocinas/imunologia , Reparo do DNA/imunologia , Feminino , Inflamação/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica/imunologia
19.
J Exp Med ; 218(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095259

RESUMO

The identification of the peptide epitopes presented by major histocompatibility complex class II (MHCII) molecules that drive the CD4 T cell component of autoimmune diseases has presented a formidable challenge over several decades. In type 1 diabetes (T1D), recent insight into this problem has come from the realization that several of the important epitopes are not directly processed from a protein source, but rather pieced together by fusion of different peptide fragments of secretory granule proteins to create new chimeric epitopes. We have proposed that this fusion is performed by a reverse proteolysis reaction called transpeptidation, occurring during the catabolic turnover of pancreatic proteins when secretory granules fuse with lysosomes (crinophagy). Here, we demonstrate several highly antigenic chimeric epitopes for diabetogenic CD4 T cells that are produced by digestion of the appropriate inactive fragments of the granule proteins with the lysosomal protease cathepsin L (Cat-L). This pathway has implications for how self-tolerance can be broken peripherally in T1D and other autoimmune diseases.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Catepsinas/imunologia , Epitopos de Linfócito T/imunologia , Lisossomos/imunologia , Fragmentos de Peptídeos/imunologia , Animais , Doenças Autoimunes/imunologia , Linhagem Celular , Diabetes Mellitus Tipo 1/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Tolerância Imunológica/imunologia , Pâncreas/imunologia
20.
MAbs ; 12(1): 1836714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33151102

RESUMO

Activation of T cells specific for insulin B chain amino acids 9 to 23 (B:9-23) is essential for the initiation of type 1 diabetes (T1D) in non-obese diabetic mice. We previously reported that peptide/MHC complexes containing optimized B:9-23 mimotopes can activate most insulin-reactive pathogenic T cells. A monoclonal antibody (mAb287) targeting these complexes prevented disease in 30-50% of treated animals (compared to 10% of animals given an isotype control). The incomplete protection is likely due to the relatively low affinity of the antibody for its ligand and limited specificity. Here, we report an enhanced reagent, mAb757, with improved specificity, affinity, and efficacy in modulating T1D. Importantly, mAb757 bound with nanomolar affinity to agonists of both "type A" and "type B" cells and suppressed "type B" cells more efficiently than mAb287. When given weekly starting at 4 weeks of age, mAb757 protected ~70% of treated mice from developing T1D for at least 35 weeks, while mAb287 only delayed disease in 25% of animals under the same conditions. Consistent with its higher affinity, mAb757 was also able to stain antigen-presenting cells loaded with B:9-23 mimotopes in vivo. We conclude that monoclonal antibodies that can block the presentation of pathogenic T cell receptor epitopes are viable candidates for antigen-specific immunotherapy for T1D.


Assuntos
Anticorpos Monoclonais/imunologia , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Epitopos de Linfócito T/imunologia , Insulina/imunologia , Fragmentos de Peptídeos/imunologia , Animais , Afinidade de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Autoantígenos/imunologia , Ligantes , Camundongos , Camundongos Endogâmicos NOD
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...