Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 239(3): 888-904, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37282764

RESUMO

Distinct survival strategies can result from trade-offs in plant function under contrasting environments. Investment in drought resistance mechanisms can enhance survivorship but result in conservative growth. We tested the hypothesis that the widespread oaks (Quercus spp.) of the Americas exhibit an interspecific trade-off between drought resistance and growth capacity. Using experimental water treatments, we isolated adaptive trait associations among species in relation to their broad climates of origin and tested for correlated evolution between plant functional responses to water availability and habitat. Across all lineages, oaks displayed plastic drought responses - typically acclimating through osmolyte accumulation in leaves and/or employing conservative growth. Oaks from xeric climates had higher osmolytes and reduced stomatal pore area index, which allows for moderated gas exchange and limits tissue loss. Patterns suggest drought resistance strategies are convergent and under strong adaptive pressure. Leaf habit, however, mediates the growth and drought resistance strategies of oaks. Deciduous species, and evergreen species from xeric climates, have increased drought tolerance through osmoregulation, which allows for continuous, conservative growth. Evergreen mesic species show limited drought resistance but could enhance growth under well-watered conditions. Consequently, evergreen species from mesic environments are especially vulnerable to chronic drought and climate change.


Assuntos
Quercus , Quercus/fisiologia , Secas , Folhas de Planta/fisiologia , Resistência à Seca , América
2.
Ecol Evol ; 12(11): e9527, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36440310

RESUMO

Specialization is a widespread but highly ambiguous and context-dependent ecological concept. This quality makes comparisons across related studies difficult and makes associated terms such as "specialist" and "generalist" scientifically obscure. Here, we present a metric-based framework to quantify specialization in 141 Quercus species using functional traits, biogeography, and species interactions. Rankings of specialization based on five metrics were used to answer questions about how specialization is used colloquially (i.e., individual species assessment by experts) and influenced by phylogenetics (Ancestral Character State Reconstruction, Automatic Shift Detection), biogeography (patterns of clustering by region and with climate), and species threat level (IUCN Red List). Metric-based ranking can be representative of specialization in a consistent and practical manner, correlating with IUCN Red List data, and the mean scores of individual expert assessments. Specialization is shown to be highly correlated with precipitation seasonality and only moderately influenced by evolutionary history. Data-deficient species were more likely to be highly specialized, and higher specialization was positively correlated with greater IUCN threat level. Frameworks for characterizing specialization and generalization can be done using metric ranking and can turn concepts that are often unclear into a definitive system. Metric-based rankings of specialization can also be used to reveal interesting insights about a clade's evolutionary history and geographic distribution when paired with the related phylogenetic and geographic data. Metric-based rankings can be applied to other systems and be a valuable tool for identifying species at risk and in need of conservation.

3.
New Phytol ; 228(6): 1824-1834, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32654151

RESUMO

Fine roots mediate below-ground resource acquisition, yet understanding of how fine-root functional traits vary along environmental gradients, within branching orders and across phylogenetic scales remains limited. Morphological and architectural fine-root traits were measured on individual root orders of 20 oak species (genus Quercus) from divergent climates of origin that were harvested after three growing seasons in a glasshouse. These were then compared with similar measurements obtained from a phylogenetically diverse dataset of woody species from the Fine-Root Ecology Database (FRED). For the oaks, only precipitation seasonality and growing season moisture availability were correlated to aspects of root diameter and branching. Strong correlations among root diameters and architecture of different branch orders were common, while correlations between diameter and length were weakly negative. By contrast, the FRED dataset showed strong positive correlations between diameter and length and fewer correlations between root diameter and architectural traits. Our findings suggest that seasonal patterns of water availability are more important drivers of root adaptation in oaks than annual averages in precipitation and temperature. Furthermore, contrasting patterns of trait relationships between the oak and FRED datasets suggest that branching patterns are differentially constrained at narrow vs broad phylogenetic scales.


Assuntos
Clima , Quercus , Fenótipo , Filogenia , Raízes de Plantas/genética , Quercus/genética , Estações do Ano
4.
Am J Bot ; 105(3): 565-586, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29689630

RESUMO

PREMISE OF THE STUDY: Evolutionary and biogeographic history, including past environmental change and diversification processes, are likely to have influenced the expansion, migration, and extinction of populations, creating evolutionary legacy effects that influence regional species pools and the composition of communities. We consider the consequences of the diversification process in shaping trait evolution and assembly of oak-dominated communities throughout the continental United States (U.S.). METHODS: Within the U.S. oaks, we tested for phylogenetic and functional trait patterns at different spatial scales, taking advantage of a dated phylogenomic analysis of American oaks and the U.S. Forest Service (USFS) Forest Inventory and Analysis (FIA). KEY RESULTS: We find (1) phylogenetic overdispersion at small grain sizes throughout the U.S. across all spatial extents and (2) a shift from overdispersion to clustering with increasing grain sizes. Leaf traits have evolved in a convergent manner, and these traits are clustered in communities at all spatial scales, except in the far west, where species with contrasting leaf types co-occur. CONCLUSIONS: Our results support the hypotheses that (1) interspecific interactions were important in parallel adaptive radiation of the genus into a range of habitats across the continent and (2) that the diversification process is a critical driver of community assembly. Functional convergence of complementary species from distinct clades adapted to the same local habitats is a likely mechanism that allows distantly related species to coexist. Our findings contribute to an explanation of the long-term maintenance of high oak diversity and the dominance of the oak genus in North America.


Assuntos
Biodiversidade , Evolução Biológica , Ecologia , Ecossistema , Fenótipo , Filogenia , Quercus/genética , Adaptação Biológica , América do Norte , Folhas de Planta , Especificidade da Espécie , Estados Unidos
5.
Ecol Evol ; 4(7): 899-910, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24772269

RESUMO

Biological invasions can transform our understanding of how the interplay of historical isolation and contemporary (human-aided) dispersal affects the structure of intraspecific diversity in functional traits, and in turn, how changes in functional traits affect other scales of biological organization such as communities and ecosystems. Because biological invasions frequently involve the admixture of previously isolated lineages as a result of human-aided dispersal, studies of invasive populations can reveal how admixture results in novel genotypes and shifts in functional trait variation within populations. Further, because invasive species can be ecosystem engineers within invaded ecosystems, admixture-induced shifts in the functional traits of invaders can affect the composition of native biodiversity and alter the flow of resources through the system. Thus, invasions represent promising yet under-investigated examples of how the effects of short-term evolutionary changes can cascade across biological scales of diversity. Here, we propose a conceptual framework that admixture between divergent source populations during biological invasions can reorganize the genetic variation underlying key functional traits, leading to shifts in the mean and variance of functional traits within invasive populations. Changes in the mean or variance of key traits can initiate new ecological feedback mechanisms that result in a critical transition from a native ecosystem to a novel invasive ecosystem. We illustrate the application of this framework with reference to a well-studied plant model system in invasion biology and show how a combination of quantitative genetic experiments, functional trait studies, whole ecosystem field studies and modeling can be used to explore the dynamics predicted to trigger these critical transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...