Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Pharmacol Exp Ther ; 384(1): 173-186, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310034

RESUMO

Acalabrutinib is a covalent Bruton tyrosine kinase (BTK) inhibitor approved for relapsed/refractory mantle cell lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma. A major metabolite of acalabrutinib (M27, ACP-5862) was observed in human plasma circulation. Subsequently, the metabolite was purified from an in vitro biosynthetic reaction and shown by nuclear magnetic resonance spectroscopy to be a pyrrolidine ring-opened ketone/amide. Synthesis confirmed its structure, and covalent inhibition of wild-type BTK was observed in a biochemical kinase assay. A twofold lower potency than acalabrutinib was observed but with similar high kinase selectivity. Like acalabrutinib, ACP-5862 was the most selective toward BTK relative to ibrutinib and zanubrutinib. Because of the potency, ACP-5862 covalent binding properties, and potential contribution to clinical efficacy of acalabrutinib, factors influencing acalabrutinib clearance and ACP-5862 formation and clearance were assessed. rCYP (recombinant cytochrome P450) reaction phenotyping indicated that CYP3A4 was responsible for ACP-5862 formation and metabolism. ACP-5862 formation Km (Michaelis constant) and Vmax were 2.78 µM and 4.13 pmol/pmol CYP3A/min, respectively. ACP-5862 intrinsic clearance was 23.6 µL/min per mg. Acalabrutinib weakly inhibited CYP2C8, CYP2C9, and CYP3A4, and ACP-5862 weakly inhibited CYP2C9 and CYP2C19; other cytochrome P450s, UGTs (uridine 5'-diphospho-glucuronosyltransferases), and aldehyde oxidase were not inhibited. Neither parent nor ACP-5862 strongly induced CYP1A2, CYP2B6, or CYP3A4 mRNA. Acalabrutinib and ACP-5862 were substrates of multidrug resistance protein 1 and breast cancer resistance protein but not OATP1B1 or OATP1B3. Our work indicates that ACP-5862 may contribute to clinical efficacy in acalabrutinib-treated patients and illustrates how proactive metabolite characterization allows timely assessment of drug-drug interactions and potential contributions of metabolites to pharmacological activity. SIGNIFICANCE STATEMENT: This work characterized the major metabolite of acalabrutinib, ACP-5862. Its contribution to the pharmacological activity of acalabrutinib was assessed based on covalent Bruton tyrosine kinase binding kinetics, kinase selectivity, and potency in cellular assays. The metabolic clearance and in vitro drug-drug interaction potential were also evaluated for both acalabrutinib and ACP-5862. The current data suggest that ACP-5862 may contribute to the clinical efficacy observed in acalabrutinib-treated patients and demonstrates the value of proactive metabolite identification and pharmacological characterization.


Assuntos
Citocromo P-450 CYP3A , Humanos , Adulto , Tirosina Quinase da Agamaglobulinemia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Citocromo P-450 CYP2C9 , Proteínas de Neoplasias , Inibidores de Proteínas Quinases/uso terapêutico
2.
Bioorg Med Chem Lett ; 52: 128406, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624491

RESUMO

Epidermal growth factor receptor (EGFR) inhibitors have clinical utility in the treatment of non-small cell lung cancer (NSCLC) patients. Despite encouraging clinical efficacy with these agents, many patients develop resistance due to sensitizing (or activating) mutations ultimately leading to disease progression. In the majority of the cases, this resistance is due to the T790M mutation and frequently coexisting L858R. In addition, EGFR wild type receptor inhibition can lead to on target related dose limiting toxicities such as rash and diarrhea. We describe herein the identification of a mutant selective lead compound 12, an irreversible covalent inhibitor of EGFR T790M/L858R resistance mutations with selectivity over the wild type form. Significant tumor growth inhibition in preclinical models was observed with this lead.


Assuntos
Acrilamidas/farmacologia , Afatinib/farmacologia , Compostos de Anilina/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas/química , Afatinib/química , Compostos de Anilina/química , Relação Dose-Resposta a Droga , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
3.
Bioorg Med Chem Lett ; 30(14): 127261, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527559

RESUMO

Bruton tyrosine kinase (BTK) is an important target in oncology and (auto)immunity. Various BTK inhibitors have been approved or are currently in clinical development. A novel BTK inhibitor series was developed starting with a quinazoline core. Moving from a quinazoline to a quinoline core provided a handle for selectivity for BTK over EGFR and resulted in the identification of potent and selective BTK inhibitors with good potency in human whole blood assay. Furthermore, proof of concept of this series for BTK inhibition was shown in an in vivo mouse model using one of the compounds identified.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Quinolinas/química , Relação Estrutura-Atividade
4.
Nat Commun ; 11(1): 3216, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587248

RESUMO

Chemical tools to monitor drug-target engagement of endogenously expressed protein kinases are highly desirable for preclinical target validation in drug discovery. Here, we describe a chemical genetics strategy to selectively study target engagement of endogenous kinases. By substituting a serine residue into cysteine at the DFG-1 position in the ATP-binding pocket, we sensitize the non-receptor tyrosine kinase FES towards covalent labeling by a complementary fluorescent chemical probe. This mutation is introduced in the endogenous FES gene of HL-60 cells using CRISPR/Cas9 gene editing. Leveraging the temporal and acute control offered by our strategy, we show that FES activity is dispensable for differentiation of HL-60 cells towards macrophages. Instead, FES plays a key role in neutrophil phagocytosis via SYK kinase activation. This chemical genetics strategy holds promise as a target validation method for kinases.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes , Proteínas Proto-Oncogênicas c-fes , Transportadores de Cassetes de Ligação de ATP/química , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Edição de Genes , Humanos , Macrófagos/metabolismo , Mutação , Neutrófilos , Fagocitose , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-fes/química , Proteínas Proto-Oncogênicas c-fes/genética , Proteínas Proto-Oncogênicas c-fes/metabolismo , Transdução de Sinais , Quinase Syk/metabolismo
5.
J Immunol ; 204(10): 2852-2863, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32253241

RESUMO

BCR signaling, involving phosphorylation of various downstream molecules, including kinases, lipases, and linkers, is crucial for B cell selection, survival, proliferation, and differentiation. Phosphoflow cytometry (phosphoflow) is a single-cell-based technique to measure phosphorylated intracellular proteins, providing a more quantitative read-out than Western blotting. Recent advances in phosphoflow basically allow simultaneous analysis of protein phosphorylation in B cell (sub)populations, without prior cell sorting. However, fixation and permeabilization procedures required for phosphoflow often affect cell surface epitopes or mAb conjugates, precluding the evaluation of the phosphorylation status of signaling proteins across different B cell subpopulations present in a single sample. In this study, we report a versatile phosphoflow protocol allowing extensive staining of B cell subpopulations in human peripheral blood or various anatomical compartments in the mouse, starting from freshly isolated or frozen cell suspensions. Both human and mouse B cell subpopulations showed different basal and BCR stimulation-induced phosphorylation levels of downstream signaling proteins. For example, peritoneal B-1 cells and splenic marginal zone B cells exhibited significantly increased basal (ex vivo) signaling and increased responsiveness to in vitro BCR stimulation compared with peritoneal B-2 cells and splenic follicular B cells, respectively. In addition, whereas stimulation with anti-IgM or anti-Igκ L chain Abs resulted in strong pCD79a and pPLCγ2 signals, IgD stimulation only induced CD79a but not pPLCγ2 phosphorylation. In summary, the protocol is user friendly and quantifies BCR-mediated phosphorylation with high sensitivity at the single-cell level, in combination with extensive staining to identify individual B cell development and differentiation stages.


Assuntos
Subpopulações de Linfócitos B/fisiologia , Linfócitos B/fisiologia , Citometria de Fluxo/métodos , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Antígenos CD79/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Imunoglobulina D/metabolismo , Imunoglobulina M/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipase C gama/metabolismo , Fosforilação , Transdução de Sinais , Análise de Célula Única
6.
J Pharmacol Exp Ther ; 363(2): 240-252, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28882879

RESUMO

Several small-molecule Bruton tyrosine kinase (BTK) inhibitors are in development for B cell malignancies and autoimmune disorders, each characterized by distinct potency and selectivity patterns. Herein we describe the pharmacologic characterization of BTK inhibitor acalabrutinib [compound 1, ACP-196 (4-[8-amino-3-[(2S)-1-but-2-ynoylpyrrolidin-2-yl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide)]. Acalabrutinib possesses a reactive butynamide group that binds covalently to Cys481 in BTK. Relative to the other BTK inhibitors described here, the reduced intrinsic reactivity of acalabrutinib helps to limit inhibition of off-target kinases having cysteine-mediated covalent binding potential. Acalabrutinib demonstrated higher biochemical and cellular selectivity than ibrutinib and spebrutinib (compounds 2 and 3, respectively). Importantly, off-target kinases, such as epidermal growth factor receptor (EGFR) and interleukin 2-inducible T cell kinase (ITK), were not inhibited. Determination of the inhibitory potential of anti-immunoglobulin M-induced CD69 expression in human peripheral blood mononuclear cells and whole blood demonstrated that acalabrutinib is a potent functional BTK inhibitor. In vivo evaluation in mice revealed that acalabrutinib is more potent than ibrutinib and spebrutinib. Preclinical and clinical studies showed that the level and duration of BTK occupancy correlates with in vivo efficacy. Evaluation of the pharmacokinetic properties of acalabrutinib in healthy adult volunteers demonstrated rapid absorption and fast elimination. In these healthy individuals, a single oral dose of 100 mg showed approximately 99% median target coverage at 3 and 12 hours and around 90% at 24 hours in peripheral B cells. In conclusion, acalabrutinib is a BTK inhibitor with key pharmacologic differentiators versus ibrutinib and spebrutinib and is currently being evaluated in clinical trials.


Assuntos
Benzamidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazinas/farmacologia , Tirosina Quinase da Agamaglobulinemia , Animais , Benzamidas/química , Relação Dose-Resposta a Droga , Humanos , Células Jurkat , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/sangue , Proteínas Tirosina Quinases/metabolismo , Pirazinas/química
7.
Clin Cancer Res ; 23(11): 2831-2841, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903679

RESUMO

Purpose: Acalabrutinib (ACP-196) is a novel, potent, and highly selective Bruton tyrosine kinase (BTK) inhibitor, which binds covalently to Cys481 in the ATP-binding pocket of BTK. We sought to evaluate the antitumor effects of acalabrutinib treatment in two established mouse models of chronic lymphocytic leukemia (CLL).Experimental Design: Two distinct mouse models were used, the TCL1 adoptive transfer model where leukemic cells from Eµ-TCL1 transgenic mice are transplanted into C57BL/6 mice, and the human NSG primary CLL xenograft model. Mice received either vehicle or acalabrutinib formulated into the drinking water.Results: Utilizing biochemical assays, we demonstrate that acalabrutinib is a highly selective BTK inhibitor as compared with ibrutinib. In the human CLL NSG xenograft model, treatment with acalabrutinib demonstrated on-target effects, including decreased phosphorylation of PLCγ2, ERK, and significant inhibition of CLL cell proliferation. Furthermore, tumor burden in the spleen of the mice treated with acalabrutinib was significantly decreased compared with vehicle-treated mice. Similarly, in the TCL1 adoptive transfer model, decreased phosphorylation of BTK, PLCγ2, and S6 was observed. Most notably, treatment with acalabrutinib resulted in a significant increase in survival compared with mice receiving vehicle.Conclusions: Treatment with acalabrutinib potently inhibits BTK in vivo, leading to on-target decreases in the activation of key signaling molecules (including BTK, PLCγ2, S6, and ERK). In two complementary mouse models of CLL, acalabrutinib significantly reduced tumor burden and increased survival compared with vehicle treatment. Overall, acalabrutinib showed increased BTK selectivity compared with ibrutinib while demonstrating significant antitumor efficacy in vivo on par with ibrutinib. Clin Cancer Res; 23(11); 2831-41. ©2016 AACR.


Assuntos
Benzamidas/administração & dosagem , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Pirazinas/administração & dosagem , Adenina/análogos & derivados , Transferência Adotiva/métodos , Tirosina Quinase da Agamaglobulinemia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Transgênicos , Piperidinas , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Tirosina Quinases/genética , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
8.
PLoS One ; 11(7): e0159607, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27434128

RESUMO

Acalabrutinib (ACP-196) is a second-generation inhibitor of Bruton agammaglobulinemia tyrosine kinase (BTK) with increased target selectivity and potency compared to ibrutinib. In this study, we evaluated acalabrutinib in spontaneously occurring canine lymphoma, a model of B-cell malignancy similar to human diffuse large B-cell lymphoma (DLBCL). First, we demonstrated that acalabrutinib potently inhibited BTK activity and downstream effectors in CLBL1, a canine B-cell lymphoma cell line, and primary canine lymphoma cells. Acalabrutinib also inhibited proliferation in CLBL1 cells. Twenty dogs were enrolled in the clinical trial and treated with acalabrutinib at dosages of 2.5 to 20mg/kg every 12 or 24 hours. Acalabrutinib was generally well tolerated, with adverse events consisting primarily of grade 1 or 2 anorexia, weight loss, vomiting, diarrhea and lethargy. Overall response rate (ORR) was 25% (5/20) with a median progression free survival (PFS) of 22.5 days. Clinical benefit was observed in 30% (6/20) of dogs. These findings suggest that acalabrutinib is safe and exhibits activity in canine B-cell lymphoma patients and support the use of canine lymphoma as a relevant model for human non-Hodgkin lymphoma (NHL).


Assuntos
Antineoplásicos/administração & dosagem , Benzamidas/administração & dosagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/veterinária , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazinas/administração & dosagem , Tirosina Quinase da Agamaglobulinemia , Animais , Anorexia/induzido quimicamente , Anorexia/fisiopatologia , Antineoplásicos/efeitos adversos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/patologia , Benzamidas/efeitos adversos , Linhagem Celular Tumoral , Diarreia/induzido quimicamente , Diarreia/fisiopatologia , Modelos Animais de Doenças , Intervalo Livre de Doença , Cães , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Letargia/induzido quimicamente , Letargia/fisiopatologia , Linfoma Difuso de Grandes Células B/enzimologia , Linfoma Difuso de Grandes Células B/mortalidade , Masculino , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Pirazinas/efeitos adversos , Vômito/induzido quimicamente , Vômito/fisiopatologia , Redução de Peso/efeitos dos fármacos
9.
ACS Med Chem Lett ; 7(2): 198-203, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26985298

RESUMO

Bruton's tyrosine kinase (BTK) is a Tec family kinase with a well-defined role in the B cell receptor (BCR) pathway. It has become an attractive kinase target for selective B cell inhibition and for the treatment of B cell related diseases. We report a series of compounds based on 8-amino-imidazo[1,5-a]pyrazine that are potent reversible BTK inhibitors with excellent kinase selectivity. Selectivity is achieved through specific interactions of the ligand with the kinase hinge and driven by aminopyridine hydrogen bondings with Ser538 and Asp539, and by hydrophobic interaction of trifluoropyridine in the back pocket. These interactions are evident in the X-ray crystal structure of the lead compounds 1 and 3 in the complex with the BTK enzyme. Our lead compounds show desirable PK profiles and efficacy in the preclinical rat collagen induced arthritis model.

10.
N Engl J Med ; 374(4): 323-32, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26641137

RESUMO

BACKGROUND: Irreversible inhibition of Bruton's tyrosine kinase (BTK) by ibrutinib represents an important therapeutic advance for the treatment of chronic lymphocytic leukemia (CLL). However, ibrutinib also irreversibly inhibits alternative kinase targets, which potentially compromises its therapeutic index. Acalabrutinib (ACP-196) is a more selective, irreversible BTK inhibitor that is specifically designed to improve on the safety and efficacy of first-generation BTK inhibitors. METHODS: In this uncontrolled, phase 1-2, multicenter study, we administered oral acalabrutinib to 61 patients who had relapsed CLL to assess the safety, efficacy, pharmacokinetics, and pharmacodynamics of acalabrutinib. Patients were treated with acalabrutinib at a dose of 100 to 400 mg once daily in the dose-escalation (phase 1) portion of the study and 100 mg twice daily in the expansion (phase 2) portion. RESULTS: The median age of the patients was 62 years, and patients had received a median of three previous therapies for CLL; 31% had chromosome 17p13.1 deletion, and 75% had unmutated immunoglobulin heavy-chain variable genes. No dose-limiting toxic effects occurred during the dose-escalation portion of the study. The most common adverse events observed were headache (in 43% of the patients), diarrhea (in 39%), and increased weight (in 26%). Most adverse events were of grade 1 or 2. At a median follow-up of 14.3 months, the overall response rate was 95%, including 85% with a partial response and 10% with a partial response with lymphocytosis; the remaining 5% of patients had stable disease. Among patients with chromosome 17p13.1 deletion, the overall response rate was 100%. No cases of Richter's transformation (CLL that has evolved into large-cell lymphoma) and only one case of CLL progression have occurred. CONCLUSIONS: In this study, the selective BTK inhibitor acalabrutinib had promising safety and efficacy profiles in patients with relapsed CLL, including those with chromosome 17p13.1 deletion. (Funded by the Acerta Pharma and others; ClinicalTrials.gov number, NCT02029443.).


Assuntos
Antineoplásicos/administração & dosagem , Benzamidas/administração & dosagem , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazinas/administração & dosagem , Administração Oral , Tirosina Quinase da Agamaglobulinemia , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Benzamidas/efeitos adversos , Benzamidas/farmacocinética , Deleção Cromossômica , Diarreia/induzido quimicamente , Intervalo Livre de Doença , Relação Dose-Resposta a Droga , Feminino , Cefaleia/induzido quimicamente , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Pirazinas/efeitos adversos , Pirazinas/farmacocinética , Recidiva
11.
Org Biomol Chem ; 13(18): 5147-57, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25849561

RESUMO

Ibrutinib is a covalent and irreversible inhibitor of Bruton's tyrosine kinase (BTK) and has been approved for the treatment of haematological malignancies, such as chronic lymphocytic leukaemia, mantle cell lymphoma and Waldenström's macroglobulinemia. The covalent and irreversible nature of its molecular mode of action allows identification and monitoring of its target in an activity-based protein profiling (ABPP) setting. Fluorescent and biotinylated ibrutinib derivatives have appeared in the literature in recent years to monitor BTK in vitro and in situ. The work described here complements this existing methodology and pertains a comparative study on the efficacy of direct and two-step bioorthogonal ABPP of BTK.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Sondas Moleculares , Países Baixos , Piperidinas , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores
12.
PLoS One ; 8(3): e57348, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505428

RESUMO

TAK1 (TGF-ß Activated Kinase 1) is a MAPK kinase kinase, which activates the p38- and JNK-MAPK and NF-κB pathways downstream of receptors such as Toll-Like-, cytokine- and T-cell and B-cell receptors. Representing such an important node in the pro-inflammatory signal-transduction network, the function of TAK1 has been studied extensively. TAK1 knock-out mice are embryonic lethal, while conditional knock-out mice demonstrated either a pro- or anti-inflammatory function. To study the function of TAK1 protein in the adult immune system, we generated and characterized a transgenic mouse expressing TAK1 shRNA under the control of a doxycycline-inducible promoter. Following treatment of TAK-1 shRNA transgenic mice with doxycycline an effective knockdown of TAK1 protein levels was observed in lymphoid organs and cells in the peritoneal cavity (>50% down regulation). TAK1 knockdown resulted in significant changes in leukocyte populations in blood, bone marrow, spleen and peritoneal cavity. Upon TAK1 knockdown mice demonstrated splenomegaly, signs of systemic inflammation (increased levels of circulating cytokines and increase in cellularity of the B-cell areas and in germinal center development in the follicles) and degenerative changes in heart, kidneys and liver. Not surprisingly, TAK1-Tg mice treated with LPS or anti-CD3 antibodies showed enhanced cytokine/chemokine secretion. Finally, analysis of progenitor cells in the bone marrow upon doxycycline treatment showed increased proliferation and differentiation of myeloid progenitor cells. Given the similarity of the phenotype with TGF-ß genetic models, our data suggest that in our model the function of TAK1 in TGF-ß signal-transduction is overruling its function in pro-inflammatory signaling.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/enzimologia , Diferenciação Celular , Inflamação/enzimologia , Inflamação/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Animais , Medula Óssea/imunologia , Medula Óssea/metabolismo , Células da Medula Óssea/imunologia , Proliferação de Células , Citocinas/biossíntese , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Homeostase/genética , Homeostase/imunologia , Inflamação/imunologia , Rim/imunologia , Rim/metabolismo , Rim/patologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Camundongos Transgênicos , Miocárdio/imunologia , Miocárdio/metabolismo , Miocárdio/patologia , Interferência de RNA , Baço/imunologia , Baço/metabolismo , Baço/patologia
14.
Bioorg Med Chem Lett ; 22(1): 613-8, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22119462

RESUMO

Optimization of our previously described pyrrolopiperidone series led to the identification of a new benzamide sub-series, which exhibits consistently high potency in biochemical and cell-based assays throughout the series. Strong inhibition of LPS-induced production of the cytokine TNFα is coupled to the regulation of HSP27 phosphorylation, indicating that the observed cellular effects result from the inhibition of MK2. X-ray crystallographic and computational analyses provide a rationale for the high potency of the series.


Assuntos
Benzamidas/farmacologia , Química Farmacêutica/métodos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Piperidonas/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Simulação por Computador , Cristalografia por Raios X/métodos , Citocinas/metabolismo , Desenho de Fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Modelos Químicos , Chaperonas Moleculares , Fosforilação , Pirróis/química
15.
Bioorg Med Chem Lett ; 21(12): 3818-22, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21565500
16.
Bioorg Med Chem Lett ; 21(12): 3823-7, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21565498

RESUMO

The identification of a potent, selective, and orally available MK2 inhibitor series is described. The initial absence of oral bioavailability was successfully tackled by moving the basic nitrogen of the spiro-4-piperidyl moiety towards the electron-deficient pyrrolepyridinedione core, thereby reducing the pK(a) and improving Caco-2 permeability. The resulting racemic spiro-3-piperidyl analogues were separated by chiral preparative HPLC, and the activity towards MK2 inhibition was shown to reside mostly in the first eluting stereoisomer. This led to the identification of new MK2 inhibitors, such as (S)-23, with low nanomolar biochemical inhibition (EC(50) 7.4 nM) and submicromolar cellular target engagement activity (EC(50) 0.5 µM).


Assuntos
Descoberta de Drogas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Piperidinas/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Compostos de Espiro/síntese química , Administração Oral , Animais , Ligação Competitiva , Disponibilidade Biológica , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Peptídeos e Proteínas de Sinalização Intracelular/química , Estrutura Molecular , Piperidinas/química , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Ratos , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Bioorg Med Chem Lett ; 20(15): 4350-4, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20598883

RESUMO

6-Phenyl-1H-imidazo[4,5-c]pyridine-4-carbonitrile analogues were identified as potent and selective cathepsin S inhibitor against both purified enzyme and in human JY cell based cellular assays. This core has a very stable thio-trapping nitrile war-head in comparison with the well reported pyrimidine-2-carbonitrile cysteine cathepsin inhibitors. Compound 47 is also very potent in in vivo mouse spleenic Lip10 accumulation assays.


Assuntos
Catepsinas/antagonistas & inibidores , Nitrilas/química , Inibidores de Proteases/química , Piridinas/química , Animais , Sítios de Ligação , Catepsinas/metabolismo , Linhagem Celular , Cristalografia por Raios X , Humanos , Camundongos , Nitrilas/síntese química , Nitrilas/farmacocinética , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacocinética , Piridinas/síntese química , Piridinas/farmacocinética , Relação Estrutura-Atividade
18.
Arthritis Res Ther ; 7(6): R1271-80, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16277680

RESUMO

Glucocorticoids have successfully been used in the treatment of rheumatoid arthritis. Data suggest that 7alpha-hydroxy-dehydroepiandrosterone (7alpha-OH-DHEA), an immunostimulating metabolite of dehydroepiandrosterone, can block glucocorticoid-induced immune suppression. Formation of 7alpha-OH-DHEA is catalyzed by activity of cytochrome p450 enzyme 7b (Cyp7b). Recently, we reported that tumour necrosis factor (TNF)-alpha, IL-1alpha, IL-1beta and IL-17 enhance Cyp7b mRNA expression and induce a concomitant increase in the formation of 7alpha-OH-DHEA by fibroblast-like synoviocytes (FLS) from rheumatoid arthritis patients. The aim of this study was to elucidate which signal transduction pathway is involved in the TNF-alpha-mediated induction of Cyp7b activity in FLS. We studied the effects of inhibitors of different signal transduction pathways on Cyp7b activity in FLS by measuring Cyp7b mRNA expression using reverse transcription PCR and by measuring the formation of 7alpha-OH-DHEA. We applied SN50, an inhibitor of nuclear translocation of transcription factors (i.e. activator protein-1 [AP-1] and nuclear factor-kappaB [NF-kappaB]); PSI, a proteasome inhibitor that prevents IkappaB degradation and thereby NF-kappaB release; SP600125, a c-Jun N-terminal kinase (JNK) inhibitor; and the mitogen-activated protein kinase inhibitors PD98059 (extracellular signal-regulated kinase) and SB203580 (p38). Cyp7b is constitutively expressed in RA FLS and can be activated in response to TNF-alpha. SN50 and PSI prevented the TNF-alpha-induced increase in Cyp7b activity, whereas the mitogen-activated protein kinase inhibitors PD98059 and SB203580 had no effect. In addition, inhibition of Cyp7b mRNA expression and activity was observed with SN50, PSI and SP600125, suggesting that NF-kappaB and AP-1 induce Cyp7b transcription. These findings suggest that NF-kappaB and AP-1 are involved in the TNF-alpha-enhanced formation of the dehydroepiandrosterone metabolite 7alpha-OH-DHEA. Our results are in accordance with presence of AP-1 and NF-kappaB binding sites in the Cyp7b promoter.


Assuntos
Artrite Reumatoide/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Desidroepiandrosterona/metabolismo , NF-kappa B/metabolismo , Esteroide Hidroxilases/metabolismo , Membrana Sinovial/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Sequência de Bases , Linhagem Celular , Sistema Enzimático do Citocromo P-450/genética , Família 7 do Citocromo P450 , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Oligopeptídeos/farmacologia , Peptídeos/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esteroide Hidroxilases/genética , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Transcrição Gênica/efeitos dos fármacos
19.
Arthritis Rheum ; 50(10): 3346-53, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15476247

RESUMO

OBJECTIVE: The endogenous steroid dehydroepiandrosterone (DHEA) has been reported to play a role in rheumatoid arthritis (RA). DHEA is metabolized by the P450 enzyme CYP7B into 7alpha-OH-DHEA, which has immunostimulating properties. This study was undertaken to investigate the putative role of CYP7B in arthritis using murine collagen-induced arthritis (CIA), an interleukin-1beta (IL-1beta)-dependent model. METHODS: DBA/1J mice were immunized and administered a booster with type II collagen. The presence of 7alpha-OH-DHEA was determined in both arthritic and nonarthritic joints and the serum of CIA mice by radioimmunoassay. CYP7B messenger RNA (mRNA) expression was analyzed in synovial biopsy samples, and in fibroblast-like synoviocytes (FLS) isolated from these synovial biopsy samples, by reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, the regulatory role of IL-1beta on CYP7B activity in FLS was determined using RT-PCR, Western blotting, and high-performance liquid chromatography. RESULTS: In knee joint synovial biopsy samples from arthritic mice, 7alpha-OH-DHEA levels were 5-fold higher than in nonarthritic mice. Elevated levels of 7alpha-OH-DHEA were accompanied by an increase in CYP7B mRNA expression and were positively correlated with disease severity. In serum, no differences in 7alpha-OH-DHEA levels were observed between arthritic and nonarthritic mice. Incubation of FLS with IL-1beta resulted in a dose-dependent increase in 7alpha-OH-DHEA formation. In addition, IL-1beta enhanced CYP7B mRNA and CYP7B protein levels in FLS. CONCLUSION: Disease progression in CIA is correlated with enhanced CYP7B activity, which leads to locally enhanced 7alpha-OH-DHEA levels. Elevated IL-1beta levels within the arthritic joint may regulate this increase in CYP7B activity.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Desidroepiandrosterona/metabolismo , Interleucina-1/fisiologia , Esteroide Hidroxilases/metabolismo , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/enzimologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/enzimologia , Western Blotting , Cromatografia Líquida de Alta Pressão , Colágeno , Sistema Enzimático do Citocromo P-450/genética , Masculino , Camundongos , Camundongos Endogâmicos DBA , RNA Mensageiro/análise , Radioimunoensaio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença , Esteroide Hidroxilases/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...