Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Free Radic Biol Med ; 194: 357-368, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513331

RESUMO

Following pathogen recognition, plant cells produce a nitrosative burst resulting in a striking increase in nitric oxide (NO), altering the redox state of the cell, which subsequently helps orchestrate a plethora of immune responses. NO is a potent redox cue, efficiently relayed between proteins through its co-valent attachment to highly specific, powerfully reactive protein cysteine (Cys) thiols, resulting in formation of protein S-nitrosothiols (SNOs). This process, known as S-nitrosylation, can modulate the function of target proteins, enabling responsiveness to cellular redox changes. Key targets of S-nitrosylation control the production of reactive oxygen species (ROS), the transcription of immune-response genes, the triggering of the hypersensitive response (HR) and the establishment of systemic acquired resistance (SAR). Here, we bring together recent advances in the control of plant immunity by S-nitrosylation, furthering our appreciation of how changes in cellular redox status reprogramme plant immune function.


Assuntos
Imunidade Vegetal , S-Nitrosotióis , Plantas/metabolismo , Óxido Nítrico/metabolismo , Compostos de Sulfidrila/metabolismo , Proteínas/metabolismo , Oxirredução , S-Nitrosotióis/metabolismo
2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-447491

RESUMO

In a perspective entitled From plant survival under severe stress to anti-viral human defense we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named ReprogVirus was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the ReprogVirus platform was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to RegroVirus complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called CoV-MAC-TED. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target CoV-MAC-TED in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that de-stressing disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.

3.
Plant Signal Behav ; 4(9): 853-5, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19847118

RESUMO

At least theoretically, plants may synthesize nitric oxide (NO) either by reduction of N in higher oxidations states, or by oxidation of more reduced N-compounds. The well established reductive pathway uses nitrite as a substrate, produced by cytosolic nitrate reductase. The only oxidative pathway described so far comprises nitric oxide synthase (NOS)-like activity, where guanidino-N from L-arginine is oxidized to NO. In our previous paper we have demonstrated yet another form of oxidative NO formation, whereby hydroxylamine (HA), but also the AOX-inhibitor salicylhydroxamate (SHAM) is oxidized to NO by tobacco suspension cells. Oxidation of HA to NO was also demonstrated in vitro by using ROS producing enzymes. Apparently superoxide radicals and/or hydrogen peroxide served as oxidants. Another unexpected observation pointed to a special role for superoxide dismutase in oxidative NO formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...